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Abstract 18 

The present study will test whether energy-minimizing behaviors evoke reward-related brain activity that 19 

promotes the repetition of such behaviors via reinforcement learning processes. Participants in a standing 20 

position will perform a task where they can earn a reward either by sitting down or squatting while 21 

undergoing electroencephalographic (EEG) recording. Reward-prediction errors will be quantified as the 22 

amplitude of the EEG-derived reward positivity. Our primary hypothesis is that reward associated with 23 

sitting leads to larger reward positivity (H1). Secondarily, we hypothesize that this effect is moderated by 24 

typical physical activity, physical activity on the day of the study, and during the study (H2); the probability 25 

of choosing the stimulus more likely to lead to sitting than standing increases as the number of trials 26 

increases (H3); and reward positivity predicts subsequent decisions about whether one chooses the same 27 

or different stimulus (H4). 28 
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1. INTRODUCTION 33 

Imagine your supervisor calls you to their office to give you a bonus check. Upon learning that you earned 34 

the reward, would its value change if you knew you had to walk several flights of stairs as opposed to 35 

being able to take an elevator ride, equal in time, to retrieve it? The answer to this question has 36 

implications for one’s level of physical activity. Most individuals are now cognizant of the positive effects 37 

of regular physical activity and have the intention to be active (Martin, Morrow, Jackson, & Dunn, 2000; 38 

Canadian Fitness and Lifestyle Research Institute, 2008). Yet, this intention is not always sufficient to 39 

engage in physical activity (Rhodes & Dickau, 2012). A recent study involving 1.9 million participants 40 

showed that more than a quarter of all adults are physically inactive, which extrapolates to more than 1.4 41 

billion adults when considering the world population (Guthold, Stevens, Riley, & Bull, 2018). Some other 42 

results are even more concerning, especially in the United States, where more than 95% of adults fail to 43 

accumulate the recommended 30 min of moderate-to-vigorous physical activity on at least 5 days per 44 

week (Troiano et al., 2008). This high prevalence is concerning because physical inactivity involves higher 45 

risks of cardiovascular disease (Wahid et al., 2016), hypertension (Liu et al., 2017), diabetes (Aune, Norat, 46 

Leitzmann, Tonstad, & Vatten, 2015), cancer (Moore et al., 2016), depression (Schuch et al., 2017; 47 

Boisgontier et al., 2020), obesity (Bleich, Vercammen, Zatz, Frelier, Ebbeling, & Peeters, 2018), and 48 

mortality (Ekelund et al., 2019) with 6 to 10% of all deaths from non-communicable diseases worldwide 49 

attributed to physical inactivity (Lee et al., 2012).  50 

It has been speculated that this failure to be physically active may be explained by automatic reactions 51 

toward stimuli that are related to physical activity behaviors (Conroy and Berry, 2017). These automatic 52 

reactions may disrupt the implementation of behavioral goals grounded in reflective motivation (Strack & 53 

Deutsch, 2004). Experimental studies testing these automatic reactions show that stimuli related to 54 

physical activity automatically attract attention (Berry, 2006; Berry, Spence, & Stolp, 2011; Calitri, Lowe, 55 

Eves, & Bennett, 2011; Cheval et al., 2020a), and trigger automatic affective reactions (Bluemke, Brand, 56 
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Schweizer, & Kahlert, 2010; Conroy, Hyde, Doerksen, & Ribeiro, 2010; Rebar, Ram, & Conroy, 2015) as 57 

well as approach tendencies (Cheval, Sarrazin, & Pelletier, 2014; Cheval, Sarrazin, Isoard-Gautheur, Radel, 58 

& Friese, 2015; Cheval, Sarrazin, Boisgontier, & Radel, 2017; Cheval et al., 2018). These effects are stronger 59 

in active individuals, but inactive individuals generally demonstrate similar positive automatic reactions 60 

toward physical activity. Taken together, these results suggest that automatic reactions can support 61 

physical activity behaviors in both active and inactive individuals, which contrasts with the current 62 

pandemic of physical inactivity (Kohl 3rd et al., 2012). These results also suggest that automatic reactions 63 

toward physical activity can hardly explain this pandemic.  64 

The recent theory of effort minimization in physical activity suggests that an automatic attraction toward 65 

behaviors minimizing energetic cost, which may be inherently rewarding, could explain the inability to 66 

transform intentions to be physically active into actions (Cheval et al., 2018; Cheval & Boisgontier, 2021). 67 

The repeated failure in counteracting this automatic attraction may partly explain the pandemic of 68 

physical inactivity (Boisgontier & Iversen, 2020). A positive bias toward lower energy expenditure has been 69 

evidenced in decision-making and learning tasks (Klein-Flügge, Kennerley, Friston, & Bestmann, 2016; 70 

Palidis & Gribble, 2020; Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010; Skvortsova, 71 

Palminteri, & Pessiglione, 2014). In the study by Klein-Flügge et al. (2016), participants were asked to make 72 

a series of choices between two options, which independently varied in required grip force and reward 73 

magnitude. The monetary reward ranged from 10 to 40 pence and required effort ranged from 20% to 74 

80% of maximum grip force. Similarly, Skvortsova et al. (2014) used a probabilistic instrumental learning 75 

task with binary choices (left or right) and four possible outcomes: two reward levels (20¢ or 10¢) times 76 

two effort levels (80% and 20% of maximal force). Participants were encouraged to accumulate as much 77 

money as possible and to avoid making unnecessary effort. In the study by Palidis and Gribble (2020), 78 

participants made binary choices that probabilistically affected whether they were asked to accurately 79 

produce a low or high level of quadriceps activation to earn a reward. Electroencephalographic (EEG) 80 
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activity time-locked to feedback about whether they earned the reward for accurate force production was 81 

assessed. Results showed participants were more likely to change their response from the previous trial 82 

if it led to high effort. Results also showed that reward-related brain activity was greater when participants 83 

received reward feedback on high effort trials. These results are consistent with findings showing 84 

individuals learn to make decisions to avoid high physical effort but, paradoxically, value rewards obtained 85 

with high effort more those obtained with low effort (Inzlicht, Shenhav, Olivola, 2018). In the study by 86 

Prévost et al. (2010), participants decided whether it was worth investing in a stronger effort using a hand 87 

grip to see an erotic picture clearly for 3 s or to invest in a small effort to see the picture for 1 s. These 88 

four studies showed that during choices involving monetary or erotic reward and physical effort the brain 89 

serves as a choice comparator for effort-reward trade-offs (Klein-Flügge et al., 2016) with behaviors 90 

associated with higher physical effort being avoided (Paladis & Gribble, 2020) and devalued (Prévost et 91 

al., 2010; Skvortsova et al., 2014). In line with the theory of effort minimization, experimental results 92 

suggest that a high tendency to approach stimuli related to sedentary behaviors can contribute to explain 93 

the gap between intentions to be physically active and actual physical activity (Cheval et al., 2015). Other 94 

results suggest sedentary stimuli require more inhibitory control to avoid relative to physical activity 95 

stimuli (Cheval et al., 2020) and that avoiding sedentary stimuli requires higher brain activity linked to 96 

inhibitory control and conflict monitoring than approaching sedentary stimuli (Cheval et al., 2018). These 97 

results are consistent with the notion that such stimuli are attractive and, thus, difficult to avoid. Finally, 98 

epidemiological research shows that declines in cognitive functioning, which may be necessary to avoid 99 

sedentary stimuli, precede declines in physical activity (Cheval et al., 2020b). 100 

An untested corollary from the theory of effort minimization is that energy-minimizing behaviors elicit 101 

reward-related brain activity that promotes the repetition of such behaviors via reinforcement learning 102 

processes (Rescorla & Wagner, 1972; Sutton & Barto, 1998). One of the crucial processes underlying 103 

reinforcement learning is the brain’s computation of positive and negative reward-prediction errors, 104 
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which represent the degrees to which actual outcomes are better or worse than expected, respectively. 105 

Positive reward-prediction errors act as signals within the brain to increase the value of decisions and 106 

actions that led to the errors, thus ‘stamping in’ such decisions and actions. Conversely, negative reward-107 

prediction errors act as signals within the brain to decrease the value of decisions and actions that led to 108 

the errors, thus ‘stamping out’ such decisions and actions. Reward-prediction errors in humans can be 109 

quantified using the reward positivity component of the event-related potential (ERP) derived from the 110 

EEG (Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin, 2015). The reward positivity manifests as a 111 

positive deflection in the ERP 250 – 350 ms following rewarding feedback and is maximal at midline 112 

frontocentral electrode sites. Based on the theory of effort minimization and reinforcement learning 113 

theory, experiencing a positive reward-prediction error from taking the elevator or a negative reward-114 

prediction error from taking the stairs should reinforce behaviors that optimize opportunities to take the 115 

former, such as choosing to enter a building through a specific door known to have easy access to an 116 

elevator.  117 

In the present research, we will test hypotheses consistent with the theory of effort minimization in 118 

physical activity (Cheval et al., 2018; Cheval & Boisgontier, 2021) and reinforcement learning theory 119 

(Rescorla & Wagner, 1972; Sutton & Barto, 1998). Specifically, participants will perform a doors task 120 

inspired by Hassall, Hajcak, and Krigolson (2019) and crossed with a movement-incentive delay task 121 

(Cheval, Boisgontier, Bacelar, Feiss, and Miller, 2019), both of which have been used to study 122 

reinforcement learning brain activity (i.e., reward positivity). On each trial, participants in a standing 123 

position will choose one of two stimuli (“doors”) on the screen. Following this choice, they will first be 124 

informed whether they will have to sit down and squat, should they earn a reward on the trial. Next, 125 

participants will be informed whether they earned the reward or not. If they earn the reward, they will 126 

have to retrieve it by implementing the behavior indicated in the first step (i.e., sitting down or squatting 127 

and returning to the standing position). Unbeknownst to participants, both doors are equally likely to lead 128 
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to a reward, but one door is programmed to lead to an opportunity to sit 3.5 times more often than the 129 

other door. As such, since choices are unrelated to the probability of receiving a reward, we can test 130 

whether participants learn to make choices based on the likelihood of sitting.  131 

Our primary hypothesis is that opportunities to sit lead to more positive reward-prediction errors, as 132 

expressed by a larger reward positivity (H1). To test this hypothesis, we will examine whether the 133 

opportunity to sit versus stand (trial type) and being rewarded or not (reward) is associated with reward 134 

positivity amplitude and whether these variables interact with each other (Trial Type x Reward). This 135 

hypothesis follows directly from the theory of effort minimization’s prediction that opportunities to 136 

minimize energy expenditure are rewarding. We will also explore whether the effect of opportunities to 137 

sit observed in H1 is moderated by factors related to energy expenditure. Specifically, we hypothesize 138 

that the effect is larger in participants who are typically less physically active (H2.1), in participants who 139 

are physically active on the day of the experiment prior to the experiment (H2.2), and after energetically 140 

demanding behavior (i.e., squatting) during the experiment (H2.3). These predictions follow from the 141 

theory of effort minimization’s contention that opportunities to minimize energy expenditure are 142 

particularly rewarding for individuals who are typically physically inactive, and that the reward of effort 143 

minimization increases when an individual spends energy. A third hypothesis is that the probability of 144 

choosing the stimulus more likely to lead to sitting than standing will increase as the number of trials 145 

increases (H3). This follows from the theory of effort minimization’s claim that opportunities to minimize 146 

energy expenditure are rewarding, and reinforcement learning theory’s claim that decisions that lead to 147 

rewards are repeated. Finally, our fourth hypothesis is that reward positivity predicts subsequent 148 

decisions about whether one chooses the same or a different stimulus. Consistent with reinforcement 149 

learning theory, we hypothesize that a large positive reward-prediction error reinforces the decision that 150 

led to it (i.e., the participant should choose the same stimulus) (H4).  151 

 152 
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2. METHODS 153 

2.1. Population 154 

Sixty-four men and women between the ages of 19 and 40 years will be recruited from the College of 155 

Education Research Participant Pool at Auburn University (USA) and by word-of-mouth to participate in 156 

the study in exchange for course credit, if applicable. This demographic is convenient to the investigators 157 

and has been used in similar studies (e.g., Cheval, Boisgontier et al., 2019). To be included in the study, 158 

participants should report an absence of physical impairment and disabilities that would make repeatedly 159 

standing and sitting difficult (yes vs. no), an absence of skin allergies or sensitivity to lotions or cosmetics, 160 

and an absence of neurological impairment. 161 

 162 

2.2. Sample Size Calculation 163 

To estimate the sample size required for sufficient power (90%) with an alpha level lowered to 2%, we 164 

focused on the linear mixed-effects model (MEM) used to test H1, our primary hypothesis. In general, 165 

sample size calculation is difficult and sensitive since it depends on the values of all (fixed and random) 166 

parameters. However, in a fully balanced case, such as the current design (40 trials per trial type/reward 167 

combination [condition]), repeated-measures ANOVA and linear MEM will be nearly identical. For 168 

repeated-measures ANOVA, we know the main effects and interaction tests will be independent; the 169 

distribution under the alternative hypothesis is a non-central F with non-centrality parameter: 170 

! =

#∑ ∑ %!";interest
**

"+,
*
!+,
1

'
(-* + 2(./012130

*
 171 

where “interest” corresponds either to the main effect of trial type and, thus, %, and (,*, to the main 172 

effect of reward and, thus, %* and (**, or to the Trial Type x Reward interaction and, thus, %4 and (4*. R is 173 

the number of repetitions per participant and per condition. Based on H1, our primary hypothesis, our 174 

effect of interest is the Trial Type × Reward interaction. Our pilot data results showed a Cohen’s f = .516 175 
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(see 3.2 Pilot Results). However, we decided to use a more conservative f = .25, representing a medium 176 

effect size (Cohen, 1962), because pilot study results are unlikely to yield accurate estimates of effect sizes 177 

(Albers & Lakens, 2018). An f = .25, where + = ,!/# , implies that β should be equal to 0.25 times the 178 

squared root of the denominator in the definition of !. To take realistic values, we based our values on 179 

the pilot study and used R = 34, (-* = 108, and (./012130*
= 2.5. This implies a value for βs of .715. To 180 

ensure this approach is also valid for linear MEM for our design, we ran simulation studies that showed, 181 

as in repeated-measures ANOVA, that the main effects and the interaction tests will be independent and, 182 

for example, the power for %, depends only on (,* (the variance of 2,5) and (-*. The values of (** and (4* 183 

have almost no influence on this power. The power is guided by !, as defined above. To evaluate the 184 

power for different sample sizes, we ran a MEM Monte Carlo simulation based on the model planned to 185 

address H1 with 500 samples of each size and with the above values. It was accomplished with the lmer 186 

R functions and simulated from the lme4 package. With these settings, for all effects, with α = .02, the 187 

number of participants needed to detect a medium effect size is ≥ 56. Based on the pilot study where 1 of 188 

9 participants had a poor EEG recording, we expect poor EEG recordings from 11.11% of participants. 189 

Therefore, we plan to recruit 64 participants but will ensure that we have quality data in a sufficient 190 

number of trials (n ≥ 20 condition; Marco-Pallares, Cucurell, Münte, Strien, & Rodriguez-Fornells, 2011) 191 

from at least 56 participants.  192 

For the first exploratory analysis (H2), the same reasoning and computations as the ones used for H1 can 193 

be made for all effects, and with α = .02, the number of participants needed to detect a medium effect 194 

size is also ≥ 56. Power calculation for exploratory analyses addressing H3 and H4 was attempted but not 195 

completed because the calculations failed to yield reliable results, possibly due to the increased 196 

complexity of the models. 197 

 198 

2.3. Experimental setup 199 
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Each trial of the task will begin with the participant standing and facing a table upon which will be a 200 

computer monitor, approximately eye level to the participant (Figure 1). There will be a blue container 201 

holding plastic coins next to the monitor and approximately arm-level with the participant when standing. 202 

A foldup butterfly chair will be positioned immediately behind the participant. Another blue container 203 

holding plastic coins and an empty red (collection) container will be positioned next to the chair and 204 

approximately arm-level with the participant when seated. A recording device (e.g., iPAD) will be 205 

positioned on the ground facing the participant’s legs. Participants will be told their lower body 206 

movements will be recorded to confirm that they are standing as still as possible, which they will be 207 

instructed to do to facilitate EEG recording. The participant will hold a wireless game controller 208 

throughout the experiment. 209 

 210 

Figure 1. Experimental Setup. The participants will use a game controller to respond to stimuli on a 211 

computer monitor. They will have the opportunity to win plastic coins from the blue container at arm-212 

level while standing or the blue container at arm-level while seated, based on probabilistic learning and 213 

chance. The participant will deposit the coins won in the red container. 214 

 215 

2.4. Experimental protocol 216 

Data will be collected at a single testing site. Participants’ height and weight will be measured with a 217 

stadiometer and scale. They will be asked to rate how fatigued they feel using the Multidimensional 218 
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Fatigue Inventory (Smets, Garssen, Bonke, & De Haes, 1995) and three custom items (see Appendix B) 219 

prior to starting the task. Participants will begin each trial standing and be prompted to hit a game 220 

controller button to start the trial (Figure 2). Next the participant will see two squares (or “doors”) appear 221 

on the computer monitor, one to the left and one to the right. One of the squares will be burnt orange 222 

(RGB: 205, 85, 0) and one will be navy blue (RGB: 0, 0, 128). The color of the square appearing on the left 223 

or right will vary randomly with equal probability. Participants will be instructed to select one of the 224 

squares by pressing the game controller button corresponding with the side of the monitor containing 225 

their square of choice (i.e., the left button if the square they choose is on the left side, and the right button 226 

if the square they choose is on the right side). After a choice is made, a fixation cross will appear for 300 227 

– 500 ms followed by a stimulus depicting two lines, an upper line and a lower line, with a container 228 

depicted upon one of the lines. If the container is upon the upper line (stand trial), it indicates that, if the 229 

participant earns a reward on the trial, it will result in them retrieving coins from the upper blue container 230 

that is arm-level when standing. If the container is upon the lower line (sit trial), it indicates that, if the 231 

participant earns a reward on the trial, it will result in them retrieving coins from the lower blue container 232 

that is arm-level when sitting. The lines and container stimuli will remain on the monitor for 2000 ms and 233 

will be followed by a fixation cross for 300 – 500 ms. Next, participants will see a feedback stimulus 234 

informing them whether they earned the reward or not. They will either see a “$” sign for 1000 ms 235 

indicating that they earned a reward, or a “0” for 1000 ms if they did not. Then, participants will see the 236 

word “WAIT” appear on the monitor for 3000 ms. Then, on stand reward trials, participants will hear a 237 

tone indicating that they should take a coin from the upper container, squat to touch their butt to the 238 

chair while placing the coin in the red collection container, then return to a standing position. This process 239 

will be repeated after a 6000 ms interval before the next tone, until a total of 5 coins have been retrieved. 240 

On sit reward trials, participants will sit down in the chair upon hearing the tone and take a coin from the 241 

lower container, then place the coin in the red collection container. The participant will remain seated 242 
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until the next tone, at which time the participant will retrieve another coin from the lower container by 243 

simply reaching into the container. This process will be repeated until the participant retrieves five coins 244 

in total. Participants will be told to remain seated after retrieving the fifth coin until prompted to start the 245 

next trial. 246 

On no-reward trials (“0” sign), participants will remain standing for 30 s, irrespective of the information 247 

provided to them in the first step (i.e., sit vs. stand trial). Thus, participants should set expectations about 248 

whether they will sit or squat to retrieve coins in the first step, then compute a reward-prediction error 249 

based on the feedback stimulus (“$” vs. “0”) in the second step, which will inform them whether they will 250 

indeed sit or squat to retrieve coins. 251 

Prior to starting the task, participants will be told that: each coin represents a raffle ticket to win $10 252 

[USD]; the more coins they earn, the more likely they are to win $10; on each trial, a certain color square 253 

will give them a certain probability of winning, so they should focus on choosing a square based on color; 254 

and there is no strategy for selecting a color square to win. Please see Appendix A for complete 255 

instructions that will be given to the participants. Unbeknownst to participants, each color square will 256 

have a 50% probability of resulting in a reward on each trial, but one square will have a 70% chance of 257 

resulting in a sit trial, whereas the other square will have a 20% chance of resulting in a sit trial. This 258 

procedure allows to test whether participants begin to choose the square more likely to minimize effort 259 

(H3) while avoiding having them choose a square based on its likelihood of resulting in a reward (coins). 260 

Through preliminary pilot testing, we established that these probabilities should lead to at least n = 25 of 261 

each trial type (sit reward, sit no-reward, stand reward, stand no-reward), which past research has 262 

revealed leads to a reliable reward positivity (Marco-Pallares et al., 2011). The median and minimum 263 

number of trials per condition from the pilot study are reported, and these numbers will be reported for 264 

the main study, too, as will dependability (reliability). Reliability will be obtained using generalizability 265 

theory (Carbine et al., in press; Clayson & Miller, 2017b), and using the ERP reliability analysis toolbox 266 
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implemented in Matlab software (Clayson & Miller, 2017a, 2017b). We will use reliability to contextualize 267 

results from our primary experiment (reliability is associated with standard error of measurement and 268 

effect size; Clayson & Miller, 2017) and inform future research (e.g., how many trials per condition 269 

researchers should try to obtain). 270 

 The color square with the higher probability of resulting in a sit trial will vary randomly between 271 

participants. Participants will complete a total of 160 trials, which will take about 110 min. Participants 272 

will be given breaks approximately every 22 min and will remain standing during the breaks. 273 

After finishing the task, participants will complete questionnaires. The Borg scale (Borg, 1982) will be used 274 

to rate the perceived level of exertion they typically experienced when retrieving coins and waiting for 275 

the next trial from the sitting vs. standing position. Participants will be asked whether they preferred to 276 

retrieve coins by sitting or standing. The custom fatigue questions will be asked again (Appendix B). The 277 

International Physical Activity Questionnaire (IPAQ) (Craig et al., 2003) will be used to assess the level of 278 

energy expenditure during a typical week and the current day. Dependence on exercise will be assessed 279 

with the Exercise Dependence Scale-21 (Hausenblas & Symons Downs, 2002) and their affective attitudes 280 

toward exercise will also be assessed (Courneya & Bobick, 2000). Participants will provide information 281 

related to handedness (Oldfield, 1971). Finally, participants will be informed that one of the squares was 282 

more likely to result in stand trials and asked to rate their awareness of this manipulation of likelihood on 283 

a 0 (“not aware at all”) to 10 (“fully aware”) scale. 284 
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 285 

Figure 2. Experimental protocol and stimuli. There are four types of trials, each of which begins with 286 

the participant standing. For each participant, one of the colored squares has a 70% chance of resulting 287 

in a sit trial and the other square has a 20% chance of resulting in a sit trial. Each square and each type 288 

of trial have a 50% chance of resulting in a reward, which determines whether the behavior will have to 289 

be performed or not. 290 

 291 

2.5. EEG recording and signal processing 292 

Scalp EEG will be collected from a BrainVision actiCAP system (Brain Products GmbH, Munich, Germany) 293 

labeled in accord with an extended international 10-20 system (Oostenveld & Praamstra, 2001) and 294 

sampled at 250 Hz. Data will be collected from the following electrodes: FP1, FP2, F3, Fz, F4, FC3, FCz, FC4, 295 

C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4. EEG data will be referenced online to the left earlobe and a 296 

common ground will be employed at the FPz electrode site. Electrode impedances will be maintained 297 

below 25 kΩ throughout the study and a high-pass filter will be set at 0.016 Hz. The EEG signal will be 298 

transmitted via the BrainVision wireless MOVE add-on (Brain Products GmbH) to a BrainAmp DC amplifier 299 

(Brain Products GmbH) that will amplify and digitize the signal. The amplifier will be linked to a computer 300 
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running BrainVision Recorder software (Brain Products GmbH) that will record the signal. EEG data 301 

processing will be conducted with BrainVision Analyzer 2.2 software. Data will be visually inspected to 302 

determine whether any electrode needs to be interpolated, for example due to recording failure (e.g., 1-303 

s or longer periods of voltage changing by less than 0.5 µV) and/or electrical noise (e.g., sharp changes in 304 

voltage of more than 200 µV). Next, data will be re-referenced to an average ears montage. Then, data 305 

will be prepared for independent component analysis (ICA) cleaning. First, a 1 – 40 Hz band-pass filter 306 

with 4th order roll-offs and a 60 Hz notch filter will be applied. Next, data will be visually inspected and 307 

non-stereotypical artifacts will be marked. Then, an ICA will be conducted to identify stereotypical 308 

artifacts, such as blinks and saccades. We will identify stereotypical artifacts, such as blinks and saccades, 309 

by looking for components that exhibit relatively sharp changes in frontopolar voltage (e.g., more than 310 

200 µV) that decrease in amplitude from anterior to posterior electrode sites (blinks), or exhibit broad 311 

frontopolar changes in voltage (e.g., more than 200 µV) that are larger in a hemisphere than in the other 312 

hemisphere and decrease in amplitude from anterior to posterior electrode sites (saccades). This ICA will 313 

be applied to the unfiltered data to remove identified artifacts. This cleaned data will be band-passed 314 

filtered between 0.1 and 30 Hz with 4th order roll-offs and a 60 Hz notch filter.  315 

 316 

2.6. Measures 317 

2.6.1. Reward-prediction errors: "Reward Positivity” 318 

The reward positivity will be extracted from an epoch beginning 200 ms prior to the onset of the feedback 319 

stimulus, indicating whether the participant earned the reward or not, and ending 800 ms after this 320 

stimulus. Then, the epoch will be baseline corrected with respect to the pre-stimulus interval (-200 – 0 321 

ms). Next, epochs containing a change of more than 50 µV from one data point to the next, a change of 322 

100 µV within a moving 200-ms window, or a change of less than 0.5 µV within a moving 200-ms window 323 

in any of the midline electrodes (Fz, FCz, Cz, CPz, and Pz) will be excluded from subsequent analysis. Next, 324 
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we will determine the time window for reward positivity quantification. Specifically, epochs time-locked 325 

to reward feedback will be averaged separately for reward and no-reward trials. Then, the average of the 326 

no-reward feedback epochs will be subtracted from the average of the reward feedback epochs to create 327 

a difference wave for each participant. In our pilot data, difference waves exhibited substantial 328 

interindividual variability in reward positivity peak latency (the positive peak 250 – 350 ms after feedback 329 

onset). Thus, we will adaptively center each participant’s reward positivity time window (length = 40 ms) 330 

on their reward positivity peak latency at the electrode at which it peaks (Fz, FCz, or Cz) (Clayson, Baldwin, 331 

& Larson, 2013). We will also confirm that this window includes a negative deflection in the no-reward 332 

feedback waveforms (Krigolson, 2018). If it does not, we will center the window on the maximal negativity 333 

between 250 and 350 ms in the no-reward feedback waveforms. Then, we will compute mean amplitude 334 

in each participant’s time window at Fz, FCz, and Cz for each epoch (i.e., the non-averaged data) and then 335 

average across these electrodes. If one of the electrodes malfunctions during recording, it will not be 336 

included in the average. Finally, if the reward positivity exhibits an unexpected posterior scalp distribution 337 

(i.e., maximal voltage at electrode CPz or Pz), we will quantify the component by averaging across 338 

electrodes Cz, CPz, and Pz, and submit this reward positivity to a sensitivity analysis. 339 

 340 

2.6.2. Energy expenditure 341 

The typical level of energy expenditure will be assessed using the IPAQ (Craig et al., 2003) assessing 342 

moderate-to-vigorous physical activity undertaken during a typical week (“typical MVPA”). The level of 343 

energy expenditure prior to the experiment on the day of the experiment will also be assessed using the 344 

IPAQ assessing moderate-vigorous physical activity (“today MVPA”). Finally, the level of energy 345 

expenditure during the experiment will be assessed. This variable (“study energy expenditure”) will be 346 

computed by summing the metabolic equivalents (METs) spent on each trial up to the current trial. To 347 

compute the METs spent on each trial, we will consider the actions performed during the trial and the 348 
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time spent performing these actions. Specifically, participants will spend 28 s standing on sit/stand no-349 

reward trials; 26 s sitting down and 2 s squatting (sitting down to retrieve coins and standing up to begin 350 

the next trial) on sit reward trials; and 12 s squatting and 16 s standing on stand reward trials. 1.50 METs 351 

will be assigned for sitting; 1.75 METs will be assigned for standing; and 4 METs will be assigned for 352 

squatting, which we consider moderate intensity exercise (Mansoubi et al., 2015). After converting METs 353 

from min to s, the trial types will be determined to have the following METs: sit reward = 1.30 METs; 354 

sit/stand no-reward = 1.36 METs; and stand reward = 2.11 METs. 355 

 356 

2.6.3. Behavioral measures  357 

The first behavioral measure will be the stimulus participants choose on each trial (“stimulus chosen”), 358 

which will either be the stimulus with the higher or lower probability of resulting in a sit trial. The second 359 

behavioral measure will be whether a participant changes their response (what stimulus they choose) 360 

from the previous trial (“changed response”).  361 

 362 

2.7. Statistics 363 

Factors, designs, and formal tests used to investigate the hypotheses are summarized in Supplemental 364 

Table 1. If a variable is not normally distributed, as tested by the Shapiro-Wilk normality test, the variable 365 

will be normalized using the Box–Cox transformation (Box and Cox 1964), which represents a family of 366 

power transformations that incorporates and extends the traditional methods (e.g., square root, log, 367 

inverse) to find the optimal normalizing transformation for each variable. As such, Box-Cox represents a 368 

potential best practice to normalize data (Osborne, 2010). 369 

MEMs will be used to test hypotheses. The mixed-effect approach provides a type I error rate that 370 

corresponds to its expected level (Boisgontier & Cheval, 2016) and is useful when modeling effects 371 

predicted to change over time (e.g., H3; Lohse, Shen, & Kozlowski, 2020). In several research fields, the 372 
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use of MEM is promoted as a better alternative than traditional statistical models (Boisgontier & Cheval, 373 

2016). Unlike traditional approaches (e.g., ANOVA), which require averaging trials within each condition, 374 

MEM preserve all the information (i.e., for each participant, these models keep the variability of the 375 

responses within each condition). Therefore, the number of data points in the model increases, which 376 

contains type I error rate without compromising the power (Judd, Westfall, & Kenny, 2012). The MEM will 377 

be built and fit by maximum likelihood in R using the lme4 and lmerTest packages and p-values will be 378 

approximated using the Satterthwaite's method (Bates, Mächler, Bolker, & Walker, 2015; Kuznetsova, 379 

Brockhoff, & Christensen, 2016; R Core Team, 2019). An estimate of the effect size of the fixed effects will 380 

be reported using the marginal pseudo R2 computed with the MuMIn package (Barton, 2018). Statistical 381 

assumptions associated with MEMs (normality of the residuals, homogeneity of variance, linearity, 382 

multicollinearity exclusion, and control of undue influence) will be checked for all models. If some 383 

observations exert undue influence on the model estimation (i.e., outliers), the models will be tested with 384 

and without them to ensure results’ robustness. Alpha will be set to .02 for all analyses. For exploratory 385 

analyses (see sections 2.6.2 and 2.6.3), factors that increase the fit of the models will be tested on the 386 

basis of the Bayesian Information Criterion (BIC), -2-log-likehood (-2LL), and p-values (Bollen et al., 2014). 387 

To interpret significant interactions, simple-effect analyses will be conducted. 388 

 389 

2.7.1. Primary statistical model 390 

H1 will be tested with the following linear MEM: 391 

'34567	9:;<=<><=?.! = 

(%6 + 265) + (%, + 2,5)B6<5C	B?D3	(;=5#7	>;. ;<=).! + (%* +

2*5)'34567	(#:	634567	>;. 634567).! +	%4	B6<5C	B?D3.! × '34567.! + F.!   

(1) 

where '34567	9:;<=<><=?.!  is the participant’s reward positivity in condition i, "! to "" are the fixed 392 

effect coefficients, #!# to #$# are the random effects for participant j (random intercepts and slopes), 393 
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$%&	is	the	error	term, 2,5, 2*5 and F.!  are independent, (,* is the variance of 2,5, (** is the variance of 2*5 394 

and (-* is the variance of F.!.  395 

 396 

2.7.2. Neutral outcome analysis 397 

We will use the model for H1 to ensure that reward positivity is larger on reward versus no reward trials, 398 

a condition that must be satisfied to demonstrate the presence of a reward positivity that could 399 

potentially be moderated by other factors, such as trial type. 400 

 401 

2.7.3. Exploratory analyses 402 

H2.1, H2.2, and H2.3 will be tested with the following linear MEM: 403 

'34567	9:;<=<><=?.! =	 (%6 + 265) + (%, + 2,5)B6<5C	B?D3	(;=5#7	>;. ;<=).! + (%* +

2*5)'34567	(#:	634567	>;. 634567).! + (%4+	245)P#36Q?	PRD3#7<=263.! +

	%8B6<5C	B?D3.! × '34567.! + %9B6<5C	B?D3.! × P#36Q?	PRD3#7<=263.! +

	%:'34567.! × P#36Q?	PRD3#7<=263.! +	%;B6<5C	B?D3.! × '34567.! ×

P#36Q?	PRD3#7<=263.! + F.!   

(2.1 – 2.3) 

where '34567	9:;<=<><=?.!  is the participant’s reward positivity in condition i, "! to "' are the fixed 404 

effect coefficients, #!# to #"# are the random effects for participant j (random intercepts and slopes), 405 

$%&	is	the	error	term, 2,5, 2*5, 245, and F.!  are independent, (,* is the variance of 2,5, (** is the variance of 406 

2*5, (4* is the variance of 245 and (-* is the variance of F.!, Energy Expenditure is the score on typical MVPA, 407 

today MVPA, and study energy expenditure for model 2.1, 2.2, and 2.3, respectively. 408 

 409 

H3 will be tested with the following logistic MEM: 410 
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C:Q<=(P!(S=<T2C2;	Uℎ:;3#.!)) =

	%6 + (%, + 2,5)B6<5C	W2TX36.! + 265  

(3) 

where Stimulus Chosen is the stimulus chosen by the jth participant on trial i, P5 is the conditional 411 

expectation, "! and "( are the fixed effect coefficients, 265 and 2,5 are the random intercepts and 412 

slopes for the jth participant. 413 

 414 

H4 will be tested with the following logistic MEM: 415 

C:Q<=(P!(Uℎ5#Q37	'3;D:#;3.!)) =

	%6 + (%, +

2,5)'34567	9:;<=<><=?.<,! + 265  

(4) 

where Changed Response is whether the jth participant changed their response from trial i -1 to trial i, "! 416 

and "( are the fixed effect coefficients, 265 and 2,5 are the random intercepts for the jth participant. 417 

 418 

Secondary analyses 419 

There are several variables that we plan to add to the primary models to determine if they explain residual 420 

variance. For models 1 and 2, the outcome variable, reward positivity, is sensitive to whether a reward is 421 

predicted on a trial. Although each trial (1, 2, 3, etc.), each stimulus chosen (burnt-orange square vs. navy-422 

blue square), and each type of trial (sit vs. stand) will be programmed to have 50% chances of resulting in 423 

a reward, it is possible that rewards will occur more or less frequently at times. Thus, we will add variables 424 

reflecting the probability of receiving a reward on the current trial given how frequently (1) a reward has 425 

been received up to the current trial (“reward probability”); (2) a reward has been received when 426 

choosing a certain stimulus up to the current trial (“stimulus reward probability”); and (3) a reward has 427 

been received on a certain trial type up to the current trial (“trial type reward probability”). We may also 428 

add interaction terms between these variables and those in the primary models. 429 
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For model 3, the choice of the stimulus should also be sensitive to reward probability based on the stimuli 430 

chosen up to the current trial. Therefore, we will add stimulus reward probability in this model. Stimulus 431 

chosen should also be sensitive to trial type given the stimulus chosen. Although one stimulus will be 432 

programmed to lead to sit trials 70% of the time and the other stimulus only 20%, the actual difference 433 

may depart from 50% at times. Thus, we will add a variable reflecting the probability that one stimulus 434 

leads to a sit trial relative to the probability that the other stimulus leads to a sit trial, up to the current 435 

trial (“stimulus trial type probability”). We may also add interaction terms between these variables and 436 

those in the primary models. 437 

For model 4, trial number may predict changed response, with participants changing their responses less 438 

often across trials as they learn the stimuli-trial type relationship (e.g., Lohse, Miller, Daou, Valerius, & 439 

Jones, 2020). Additionally, trial type (sit vs. stand) on the prior trial (“previous trial type”) and reward 440 

(reward vs. no-reward) on the prior trial (“previous reward”) may predict changed response. We may also 441 

add interaction terms between these variables and those in the primary models. 442 

We will also conduct exploratory analyses with data from questionnaire responses, such as sitting time, 443 

age, gender, body mass index (BMI; computed from height and weight), exercise dependence, affective 444 

attitudes toward exercise, fatigue, and rating of perceived exertion associated with retrieving coins on 445 

stand reward and sit reward trials. Additionally, we may conduct sensitivity analyses using ranked IPAQ 446 

scores (Sagelv et al., 2020).  447 

 448 

3. PILOT STUDY 449 

After conducting several preliminary pilot studies aiming to refine the paradigm (e.g., number of trials, 450 

probabilities that each stimulus leads to a sit trial), we conducted our main pilot study with two objectives. 451 

First, we sought to determine whether we could observe a reward positivity in our data that could 452 

potentially be moderated by trial type. Such effect would be observed if there was a frontocentral positive 453 
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deflection in the ERP time-locked to feedback onset for reward trials in comparison to no-reward trials. 454 

Second, we sought to determine whether the rating of perceived exertion (Borg, 1982) was lower for trials 455 

in which participants sat to retrieve rewards versus squatted to retrieve rewards. No persistent movement 456 

artifact was observed in the segments of pilot EEG data from which the reward positivity was extracted 457 

(i.e., the data time-locked to feedback presentation). This was expected because participants are 458 

motionless when feedback is presented. Additionally, despite participants squatting, no sweat artifact was 459 

observed in the pilot EEG data, which was expected because the testing room temperature is kept at 20°C. 460 

The pilot data to inform the sample size calculation, which was conducted with a simulation informed by 461 

the data (see 2.2 Sample Size Calculation). Regarding the number of trials for each condition, sit reward: 462 

median = 36.5, min = 24; sit no-reward: median = 32.5, min = 26; stand reward: median = 39, min = 30, 463 

and stand no-reward: median = 39, min = 29. 464 

 465 

3.1. Pilot population 466 

We recruited nine participants from the College of Education Research Participant Pool at Auburn 467 

University (USA) (5 males; age = 21.2 ± 1.2 years, BMI = 24.7 ± 4.8 kg/m2, mean ± SD). We determined 468 

seven participants were required to detect a main effect of reward, based on an effect size observed in 469 

our past research (Meadows, Gable, Lohse, & Miller, 2016), but chose to recruit at least eight participants 470 

in case of data loss due to poor EEG recording, which did occur for one participant. 471 

 472 

3.2. Pilot results 473 

ERP waveforms and scalp topographies for the pilot data are depicted in Supplemental Figure 1. The figure 474 

suggests that we were able to obtain clean data, which is further evidenced by the fact that we lost only 475 

11.4% (SD = 10.8%) of trials per participant due to artifacts in the EEG. As expected, a 2 (Trial Type: Sit vs. 476 

Stand) x 2 (Reward: Reward vs. No-Reward) repeated-measures ANOVA revealed a main effect of reward, 477 
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F(1, 7) = 16.2, p = .005, f = 1.52, such that reward positivity was larger for reward trials (M = 11.8 µV, SD = 478 

8.48 µV) than no-reward trials (M = 5.51 µV, SD = 5.86 µV). The Trial Type x Reward interaction was F(1, 479 

7) = 1.86, p = .215, f = .516, and the main effect of trial type was F(1, 7) = 0.851, p = .387, f = .348. Regarding 480 

the second objective of the pilot data, as expected, a paired-sample t-test revealed that rating of 481 

perceived exertion was lower when retrieving rewards on sit trials (M = 7.33, SD = 1.41) than stand trials 482 

(M = 11.1, SD = 2.20), t(8) = 4.09, p = .004, d = 1.36. The primary statistical models were also tested with 483 

the pilot study data and results are shown in Supplemental Table 2, 3, and 4. 484 
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Appendix A: Task instructions read to participants 725 

“To start each trial, press the bottom (A) button. Each trial begins with a burnt-orange and a navy-blue 726 

square. Select which color square you want to choose by pressing the left (X) button or the right (B) button. 727 

So, on this trial, if you choose the burnt-orange square, you would press the ____ button. If you choose 728 

the navy-blue square, you would press the _____ button. YOU SHOULD FOCUS ON SELECTING A SQUARE 729 

BASED ON COLOR, NOT BASED ON LOCATION. In other words, select a square because it is burnt-orange 730 

or navy-blue, not because it is on the left or right. After making your selection, you will see a stimulus 731 

indicating whether you will retrieve your reward from the upper or lower container, if you win a reward. 732 

If you see a stimulus with the container on the upper line, then you will be retrieving your reward from 733 

the upper container. If you see a stimulus with the container on the lower line, then you will be retrieving 734 

your reward from the lower container. Next, you will see if you actually won a reward or not. If you see a 735 

dollar sign, then you won a reward. If you see a zero, then you did not win a reward. If you win a reward 736 

from the upper container, then you will wait until you hear a tone. When you hear a tone, you will take a 737 

coin from the upper container, touch your butt to the chair, then place the coin in the upper collection 738 

container. You will repeat this sequence four more times when prompted by a tone. If you win a reward 739 

from the lower container, then you will wait until you hear a tone. When you hear a tone, you will sit 740 

down in the chair and take a coin from the lower container, then place the coin in the lower collection 741 

container. You will remain seated and reach into the lower container to retrieve a coin each time you hear 742 

a tone (you will hear four more tones). When you are prompted to start the next trial, return to a standing 743 

position. If you get feedback that indicates a zero instead of a dollar sign, then simply remain standing. 744 

Each coin represents a raffle ticket to win $10, so the more coins you earn, the more likely you are to win 745 

$10. On each trial, a certain color square will give you a certain probability of winning, so, again, FOCUS 746 

ON CHOOSING A SQUARE BASED ON COLOR. However, there is no strategy for selecting a color square in 747 
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order to win. In other words, there is no pattern as to which color square will give you the best chance at 748 

winning from trial to trial.”749 
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Appendix B: Fatigue Questions 

1. Right now, how fatigued are you? 

0 1 2 3 4 5 6 7 8 9 10 

      Not At All                 Very Much 

 

2. Right now, I have no energy 

0 1 2 3 4 5 6 7 8 9 10 

            Completely Disagree                                Completely Agree 

 

3. Right now, I feel physically exhausted 

0 1 2 3 4 5 6 7 8 9 10 

           Completely Disagree                                Completely Agree  



 38 

Supplementary Figure 1. ERP waveforms and scalp topographies for the pilot data 
 

 
Notes. Left panel: Grand average waveforms by trial type and reward from pilot study. Right 
panel: Scalp topographies for reward and no reward trials, both averaged across trial type.



 

 

Supplementary Table 1. 
 Factors Design Formal test 
Primary Hypothesis 

H1: Larger reward positivity for opportunities to sit Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) Within-subjects Significant interaction between the within factors 

Exploratory Hypotheses 

H2.1: The larger reward positivity for opportunities to sit is more 
pronounced in participants who are typically less physically active. 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (typical MVPA; continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H2.2: The larger reward positivity for opportunities to sit is more 
pronounced in participants who are more active on the day of the 
experiment. 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (today MVPA; continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H2.3: The larger reward positivity for opportunities to sit is more 
pronounced after energetically demanding behavior during the 
experiment (i.e., squatting). 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (study energy expenditure; 
continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H3:	The probability of choosing the stimulus more likely to lead to 
sitting than standing increases as the number of trials increases. Within: Trial number (continuous) Within-subjects 

Significant main effect of trial number on the chosen 
stimulus 

H4:	Reward positivity predicts subsequent decision about 
whether a participant chooses the same or different stimulus. Within: reward positivity values (continuous) Within-subjects Significant main effect of reward positivity on the 

changed response 
Notes. MVPA = Moderate to vigorous physical activity  



 

 

Supplementary Table 2. Pilot estimates of the	effects of opportunities to sit on reward positivity and the moderation by energy expenditure 
 

   Opportunities to sit  
(Model 1, 1083 obs.) 

   Typical MVPA  
(Model 2.1, 1083 obs.) 

  Today MVPA  
(Model 2.2, 1083 obs.) 

  Study energy expenditure  
(Model 2.3, 1079 obs.) 

 

Fixed Effects  b SE p   b SE p   b SE p   b SE p  
Intercept  5.378 2.379  0.050 .  5.485 1.964 0.020 *  5.245   2.353 0.053 .  5.368  2.376  0.050 . 
Reward  5.703  0.893 2.5 × 10-10 ***  5.542 0.886 5.9 × 10-10 ***  5.787 0.891 1.3 × 10-10 ***  5.728 0.895 2.3 × 10-10 *** 
Type  0.127 0.922 0.890   0.451 0.919 0.623   0.058 0.922 0.949   0.152 0.926 0.869  
Energy       -3.091 1.859 0.129 .  2.132 2.276 0.373   0.466 0.648 0.472  
Reward × Type  1.693 1.292 0.190   1.352 1.285 0.293   1.710 1.290 0.185   1.679 1.296 0.195  
Reward × Energy       -1.708 0.884 0.053  .  -1.461 0.867 0.092 .  -0.353 0.921 0.701  
Type × Energy       2.120 0.926 0.022 *  -0.173 0.917 0.850   -0.647 0.897 0.470  
Reward × Type × Energy       -2.540 1.305 0.051 .  -0.605 1.300 0.641   0.070 1.294 0.956  
Random Effect  σ²     σ²     σ²     σ²    

Participant (intercept)  42.15     27.75     40.89     42.00    
Residual  111.81     109.34     110.98     112.00    
Notes. SE = standard error; obs. = observations; MVPA = Moderate-to-vigorous physical activity. No Reward is coded 0 and Reward is coded 1. Type is coded 0 for stand trials and 1 

for sit trials. Here, due to the low sample size of this pilot study, the analyses could not follow the models defined above, some random effects are missing as the analyses 
only included the random intercept of subject. In Stage 2 of the Registered Report, the random intercepts of all factors will be included. In the final manuscript, we will make 
sure to have exactly the same number of observations across models to be able to compare them using BIC. 



 

 

Supplementary Table 3. Pilot estimates of the	effect of trial number on the probability of choosing the stimulus more likely to lead to sitting 
than standing. 
 

   Opportunities to sit  
(Model 1, 1083 obs.) 

 

Fixed Effects  b SE p  
Intercept  0.150 0.128  0.241  
Trial  0.112 0.066 0.091 . 
Random Effects  σ²    

Participant (intercept)  0.114    
Trial  0.059    

Note. SE = standard error; obs. = observations; Choosing the 
stimulus more likely to lead to standing and sitting are coded 
0 and 1, respectively. 



 

 

Supplementary Table 4. Pilot estimate of the	effect of previous trial’s reward positivity on whether participant changed response from 
previous trial (0 = did not change; 1 = changed) 
 

   Opportunities to sit  
(Model 1, 980 obs.) 

 

Fixed Effects  b SE p  
Intercept  -0.011 0.061  0.855  
Reward Positivity on previous trial  0.042 0.061 0.486  
Random Effects  σ²    

Participant (intercept)  1 × 10-14    
Reward Positivity on previous trial  0.007    
Note. SE = standard error; obs. = observations; an absence of change and a 
change of response from previous are coded 0 and 1, respectively.  


