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Whole-brain grey matter density predicts balance stability
irrespective of age and protects older adults from falling
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A B S T R A C T

Functional and structural imaging studies have demonstrated the involvement of the brain in balance

control. Nevertheless, how decisive grey matter density and white matter microstructural organisation

are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear.

Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young

and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an

indicator of balance instability. The mean density of grey matter and mean white matter microstructural

organisation were measured using voxel-based morphometry and diffusion tensor imaging,

respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density,

and white matter microstructural organisation predicted balance instability. Results showed that both

grey matter density and age independently predicted balance instability. These predictions were

reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted

balance instability beyond age and at least as consistently as age across conditions. In other words, for

balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old.

Finally, brain grey matter appeared to be protective against falls in older adults as age increased the

probability of losing balance in older adults with low, but not moderate or high grey matter density. No

such results were observed for white matter microstructural organisation, thereby reinforcing the

specificity of our grey matter findings.

� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In healthy adults, grey matter volume or density of specific
brain structures has already shown to be correlated with
performance in pursuit rotor tasks [1], tracing tasks [2], manual
dexterity [3], choice reaction time tasks [4], and gait [5]. However,
how decisive grey matter density (GM) is in predicting motor
performance remains unclear.

We investigated this question in the context of standing
balance, a motor task that has also shown to be correlated with
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structural grey matter metrics [4,6]. Balance stability is funda-
mental in humans at all ages, but becomes increasingly critical
with ageing to maintain functional independence and to avoid falls
that may cause catastrophic injuries in this population [7,8]. Com-
paring the extent to which whole-brain GM and ageing predict
balance instability would provide an indication about whether
training-induced structural brain plasticity [6] can efficiently delay
age-related deficits.

We hypothesised that age (i) and GM (ii) predict balance
instability, that such predictions are dependent on task difficulty
(iii), that GM predicts balance instability beyond age (iv), and that
GM predicts balance loss in older adults (v). To test these
hypotheses, we combined structural brain imaging and mixed-
effects model analyses to analyse balance performance of young
and older adults on a rotating platform. To investigate how specific
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the impact of GM was, we also tested the extent to which whole-
brain white matter microstructural organisation (WM) predicted
balance stability and falls.

2. Materials and methods

2.1. Participants

Thirty young (age, 22 � 3 years; height, 175 � 9 cm; weight,
69 � 12 kg; 16 males, 14 females) and 30 older (69 � 5 years;
170 � 8 cm; 78 � 14 kg; 16 males, 14 females) healthy volunteers
participated in the study. Older participants were screened for
cognitive impairment with the Montreal Cognitive Assessment test
using the standard cut-off score of 26. All participants gave their
written informed consent and procedures were performed according
to guidelines established by the ethics committee for biomedical
research at KU Leuven, Belgium, and in accordance with the World
Medical Association International Code of Medical Ethics.

2.2. Balance task

Standing balance was tested on an Equitest balance platform
(Neurocom International, Inc., Clackamas, OR, USA). This dynamic
postural system consists of a force plate (46 cm � 46 cm) moving
around a mediolateral axis that is equipped with force transducers
that measure X, Y, and Z forces (Fx, Fy, and Fz) as well as X, Y, and Z

moments (Mx, My, and Mz). Participants stood on the surface
barefoot, with the medial malleoli of the ankles vertically aligned
to the platform’s axis of rotation. A safety harness was used to
prevent falls in case of loss of balance. To fully assess balance
performance, seven platform conditions with different platform
frequencies and amplitudes were tested on participants with eyes
open and with eyes closed (Fig. 1). Each condition lasted 1 min and
was repeated twice for a total of 28 randomised trials per
participant (7 patterns � 2 visual conditions � 2 trials). Partici-
pants were instructed to minimise body sway. When a participant
lost balance and fell (held by the safety harness) or took a step to
regain balance, the trial was reported as a fall and was removed
from the balance analysis. Participants were given another
opportunity to complete the failed trials after all 28 trials had
been performed.

2.3. Balance analysis

The amount of movement of the centre of foot pressure in the
anteroposterior axis was computed using the root mean square of
its time series and used as an indicator of balance control (CoP
activity). Coordinates of the centre of pressure on the anteropos-
terior axis (CoPy) of the surface of the platform were computed as
follows:

CoPy ¼ ½ðCoPzÞðFyÞ��Mx

Fz

where CoPz is the distance from the transducers to the surface of
the platform, Fy is the anteroposterior force, and Mx is the moment
about the mediolateral axis. The root mean square of the detrended
time series for the centre of pressure was computed as follows:

CoP activity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

1

ðCoPyÞ2
vuut

where N is the number of data samples over a trial of 58 s
(5.8 � 103), with the first 2 s of each 1-min trial removed from the
analysis.
2.4. Structural brain image acquisition

Brain images were acquired on a 3.0 T Philips Achieva magnetic
resonance imaging scanner (Philips Healthcare, Best, NL) with a
32-channel head coil. For all participants, a high resolution T1-
weighted structural image was acquired using a magnetisation
prepared rapid gradient echo (repetition time, 9.70 ms; echo time,
4.60 ms; flip angle, 88; 230 sagittal slices; voxel resolution,
0.98 mm � 0.98 mm � 1 mm; matrix, 384 � 384). A field map
was acquired using a dual-gradient echo (TR, 750 ms; TE1,
5.75 ms; TE2, 7.76 ms; flip angle, 908; 35 transverse slices; gap,
0.19 mm; voxel resolution, 2 mm � 2 mm � 4 mm; matrix,
192 � 192). Single-shot spin-echo diffusion-weighted images
(TR, 4015 ms; TE, 56 ms; flip angle, 908; 50 sagittal slices; gap,
0.3 mm; voxel resolution, 2.0 mm � 1.96 mm � 2.2 mm; matrix,
220 � 220) were acquired with diffusion sensitising gradients
applied along 75 non-collinear directions (b-value of 800 s/mm2).
One b0 image with no diffusion weighting was acquired.

2.5. Imaging analysis

Images were analysed using the FMRib Software Library, FSL
(Oxford University, Oxford, UK). All T1 structural images were
checked manually for the presence of anatomical abnormalities
and magnetic resonance artefacts. Differences in GM were
determined using the FSL Voxel-Based Morphometry optimised
protocol [9–11]. This method is based on three-dimensional
magnetic resonance imaging with voxel intensity ranging from 0 to
1 and representing the combination of grey matter density and
volume of each voxel. First, structural images were brain-extracted
using the brain extraction tool [12]. To reduce the amount of ‘neck
tissue’ included in the resulting image, the centre of the brain (i.e.,
massa intermedia) was specified for each participant and used as a
command argument. Second, grey matter was segmented using
FAST4, and normalised to the MNI152 template using the affine
registration tool FLIRT [13]. The images were then averaged to
create a study-specific template, to which the native grey matter
images were non-linearly re-registered. The partial volume images
were divided by the Jacobian of the warp field to correct for local
expansion or contraction. Smoothing with an isotropic Gaussian
kernel (sigma = 4 mm) was applied to the segmented images. The
intensity of all the GM voxels was then averaged, extracted for each
participant using the fslmeants command, and used as an indicator
of whole-brain GM.

For diffusion-weighted images, the diffusion sensitising gra-
dients (‘‘bvecs’’) were rotated to correct for motion. Using the
Diffusion Toolbox, the diffusion tensor model was fitted to the
data, from which fractional anisotropy (FA) images were calculat-
ed. Tract-based spatial statistics (TBSS) was used for voxel-based
analyses of WM [14]. This involved registering all subjects’ FA
images to a common space (the FA158 MNI space template) using a
combination of affine and nonlinear registration, creating the
mean FA image, eroding it to a skeleton, and thresholding the
skeleton at FA >0.25. The resulting alignment-invariant represen-
tation of the central trajectory of white matter pathways was used
as a mask. The intensity of all the FA voxels of this skeleton was
then averaged, extracted for each participant using the fslmeants
command, and used as an indicator of whole-brain WM.

2.6. Statistical analysis

Our dataset is structured with repeated and nested measure-
ments from each participant that are crossed with each condition.
Therefore, data were analysed using mixed-models with cross-
random factors. Mixed-models process both participant and
condition factors as randomly distributed. Conversely, traditional



Fig. 1. Platform conditions and balance performance. Platform angle across time in the 7 conditions and corresponding root mean square of the centre of pressure time series

in the antero-posterior axis (CoP activity) in young (green diamonds) and older participants (blue circles) as a function of grey matter density (GM) with eyes open and eyes

closed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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analyses of variance disregard the sampling variability of condi-
tions despite numerous warnings about the shortcomings of such
practice [15–17]. A likely consequence of treating only participants
as a random effect is a large inflation of Type I errors.
The extent to which age group (young vs. older adults), GM, and
WM predicted balance instability was analysed using mixed-
effects models. These models offer a comprehensive approach to
multiple crossed-random effects, explicitly modelling variability



2 The model (not shown) with the fixed effect for age but without this random

effect displayed an AIC of 1492, i.e., 104 points higher than this model, showing the

importance of this random effect.
3 The model (not shown) with the fixed effect for GM but without this random

effect displayed an AIC of 1494, i.e., 73 points higher than this model, showing the

importance of this random effect.

M.P. Boisgontier et al. / Gait & Posture 45 (2016) 143–150146
around fixed effects [18]. The fit of these models was compared
using Akaike’s information criteria (AIC). Specifically, a series of
7 mixed-effect models specifying both participants (n = 60) and
conditions (n = 14) as random factors were built using the R
language lmerTest package, version 1.1-7 (http://www.r-project.
org/). This package, like SAS proc mixed, uses Satterthwaite’s
method to compute the degrees of freedom of the t tests. All
models controlled for weight, height, trial number (1 vs. 2), vision
(eyes closed vs. eyes open), and trial order (1–28).

Model 1 was designed to evaluate the random effects of
participants and conditions on CoP activity. Accordingly, a random
error component for the intercept was specified for these two
factors. These specifications allowed the modelling of different
levels of intercept across participants and across conditions. The
random intercept across conditions corresponds to the diversity of
the average levels of CoP activity between conditions and can
therefore be viewed as the variability of the level of difficulty
associated with each condition.

Model 2 was designed to estimate (a) the fixed effect of age on
CoP activity, (b) the random effect of age across conditions, and (c)
whether the age effect was dependent on the intercept level of
conditions. Accordingly, a random error component for age and a
covariance between the intercept and the effect of age for
conditions were added to Model 1.

Model 3 was designed to estimate (a) the fixed effect of GM on
CoP activity, (b) the random effect of GM across conditions, and (c)
whether the GM effect was dependent on the intercept level of
conditions. Accordingly, a random error component for GM and a
covariance between the intercept and the effect of GM for
conditions were added to Model 1.

Model 4 was designed to compare the effects of age and GM, and
to estimate the fixed effect of GM on the average level of CoP
activity, beyond the fixed effect of age. Accordingly, a random error
for GM and a covariance between the intercept and the GM effect
for conditions were added to Model 2. The decreases in random
effects variance between models 1 to 2, 1 to 3, and 2 to 4 were used
to evaluate the ability of age and GM to improve the fit of the model
and therefore the predictions made at the levels of participants and
conditions.

Models 5 and 6 followed the same logic as models 3 and 4, with
WM replacing GM.

Model 7 was designed to get a full picture of the effects
investigated here. The equation for this model is the following:

Yij ¼ ðb0 þ g0i þ u0jÞ þ b1 Orderij þ b2 Weighti þ b3 Heightj

þ b4 Trialij þ b5 EyesOpenij þ ðb5 þ g5iÞ AgeGrpj

þ ðb6 þ g6iÞ Grey Matter Densityj

þ ðb7 þ g7iÞ White Matter Integrityj þ 2 ij

where Yij is the score of participant at condition i, b0 to b7

are the fixed effect coefficients, uj is the random effect for the
participant j (random intercept), g0i, g5i, g6i, and g7i are the
random effects for the condition i (one random intercept and
3 random slopes) and eij is the error term. The g’s correlate with
each other.

To test the protective role of GM in falls in older adults (0 = no
falls; 1 = falls), a logistic mixed-effect model was built specifying
both participants (n = 30) and conditions (n = 7) as random factors.
A fixed effect was introduced for age as a continuous variable, GM,
and their interaction. Age and GM were centred. A random
component was specified for the intercept for participants and for
the intercept for conditions. These random components were
specified to model the diversity of the average level of falls
between participants and between conditions. This model
controlled for vision (eyes closed vs. open) and participants’
height. The model for falls is the same as the ones used for balance
stability except that what is predicted is the logarithm of the odds
of a fall, or log(pij/1 � pij) where pij is the probability of fall of
participant at condition i, and the quantity pij/1 � pij is the odd of a
fall.

3. Results

The statistical assumptions were examined. Plots of the
residuals against the predicted scores of CoP activity and against
all independent variables showed no major signs of heterosce-
dasticity. Residuals were normally distributed and centred on zero.
Descriptive statistics of the relationship between balance perfor-
mance and GM density in young and older adults are illustrated in
Fig. 1.

3.1. Predicting CoP activity: Age

Model 1 tested the random effects of conditions on CoP activity
and confirmed that the level of difficulty was different across
conditions (s2 = 1.088). Adding the fixed and random effects of
age (young vs. older adults) allowed model 2 to predict the data
more accurately than model 1 (DAIC = 117.379). As expected,
model 2 showed a significant fixed effect of age on CoP activity
(b = 0.291, df = 55.6, t = 3.263, p = 0.001, one-tailed; Table 1),
indicating that, on average, older adults showed greater balance
instability than young adults. In addition, the random effect of age
on CoP activity across conditions (s2 = 0.039) increased the
prediction power of the model,2 indicating that the fixed effect of
age on CoP activity varied across conditions. Specifically, the
positive correlation between the intercepts of the conditions and
age at the random level (r = 0.709) indicated that balance stability
was more dependent on age in more difficult than in easier
conditions. Furthermore, the unexplained variability between
participants, i.e., the random intercept at the level of participants,
decreased from 0.054 in model 1 to 0.042 in Model 2, indicating
that age explained 22.3% of the inter-individual variability in the
intercept.

3.2. Predicting CoP activity: Grey matter density

Adding the fixed and random effects of GM allowed model 3 to
predict the data more accurately than model 1 (DAIC = 84.706).
Importantly, model 3 showed a significant fixed effect of GM on
CoP activity (b = �4.384, df = 57.7, t = �3.199, p = 0.001, one-
tailed; Table 1), indicating that, on average, participants with
lower GM showed greater balance instability than participants
with higher GM. In addition, the random effect of GM on CoP
activity across conditions (s2 = 8.278) increased the prediction
power of the model,3 indicating that the fixed effect of GM on CoP
activity varied across conditions. Specifically, the negative
correlation between the intercepts of the conditions and GM at
the random level (r = �0.880; Table 1) indicated that balance
stability was more dependent on GM in more difficult than in
easier conditions. Furthermore, the unexplained variability be-
tween participants decreased from 0.054 in model 1 to 0.043 in
Model 3, indicating that GM explained 20.4% of the inter-individual
variability in the intercept.

http://www.r-project.org/
http://www.r-project.org/


Table 1
Summary of mixed-effects model analyses for predicting the centre of pressure activity. Model 1 evaluates the random effects of participants and conditions on the centre of pressure activity. Model 2 adds a fixed and random effect

for age. Model 3 adds a fixed and random effect for grey matter. Model 4 adds a fixed and random effect for both age and grey matter. Model 5 adds a fixed and random effect for white matter. Model 6 adds a fixed and random effect

for both age and white matter. Model 7 adds a fixed and random effect for age, grey matter, and white matter. GM, grey matter density; WM, white matter microstructural organisation; *p<0.05; **p<0.01; ***p<0.001; yone-tailed

tests corresponding to the hypotheses; b = estimate; SE = standard error; s2 = variance; r = correlation.

Centre of pressure activity Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Fixed effects b SE p-Value b SE p-Value b SE p-Value b SE p-Value b SE p-Value b SE p-Value b SE p-Value

Intercept 1.393 0.743 0.003** 0.860 0.740 0.026* 1.013 0.346 0.009** 1.027 0.331 0.006** 1.111 0.386 0.012* 1.030 0.320 0.005** 1.105 0.316 0.002**

Order �0.002 <0.001 0.032* �0.002 0.001 0.004** �0.002 0.001 0.019* �0.002 0.001 0.005** �0.002 <0.001 0.024* �0.003 <0.001 0.006** �0.002 0.001 0.009**

Weight 0.004 0.003 0.101 �0.002 0.003 0.411 �0.001 0.003 0.809 �0.003 0.003 0.281 0.003 0.003 0.234 �0.002 0.003 0.595 �0.002 0.003 0.431

Height <0.001 0.003 0.962 0.010 0.004 0.022* 0.006 0.004 0.122 0.010 0.004 0.017* 0.005 0.004 0.277 0.009 0.004 0.035* 0.010 0.004 0.027*

Trial 0.009 0.017 0.616 0.008 0.017 0.620 0.009 0.017 0.614 0.008 0.017 0.610 0.007 0.017 0.666 0.007 0.017 0.669 0.007 0.017 0.658

Eyes open

(vs. eyes closed)

0.734 0.558 0.210 1.531 0.417 0.003** 1.502 0.343 <0.001*** 1.294 0.339 0.002** 1.266 0.518 0.028* 1.155 0.364 0.006** 1.088 0.319 0.003**

Age (young vs.

older adults)

0.291 0.089 0.001**y 0.193 0.098 0.037*y 0.300 0.124 0.009**y 0.020 0.126 0.042*y

GM �4.384 1.371 0.001**y �2.571 1.411 0.026*y �2.407 1.434 0.049*y

WM �2.243 1.280 0.043*y 1.010 1.690 0.264y 1.259 1.657 0.225y

Random effects s2 r s2 r s2 r s2 r s2 r s2 r s2 r

Participants

Intercept 0.054 0.042 0.043 0.039 0.046 0.040 0.038

Condition

Intercept 1.088 1.092 1.237 1.084 1.127 0.929 0.972

Age 0.039 0.028 0.055 0.038

GM 8.278 2.008 1.817

WM 3.345 3.025 3.105

Correlation

(Intercept, Age)

0.709 0.448 0.753 0.618

Correlation

(Intercept, GM)

�0.880 �0.997 �0.998

Correlation

(Age, GM)

�0.393 �0.661

Correlation

(Intercept, WM)

�0.48 0.978 0.974

Correlation

(Age, WM)

0.873 0.779

Correlation

(WM, GM)

�0.985

Residual 0.125 0.114 0.117 0.113 0.117 0.111 0.110

Akaike Information

Criterion

1505.5 1388.1 1420.8 1381.5 1357.0 1287.6 1284.7
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Fig. 2. Fixed and random effects. (A) Distributions of the whole-brain grey matter mean density (yellow box plot) and age (purple box plot) within the study sample. (B)

Prediction of the fixed effect of grey matter (yellow line) and age (purple line). (C) Prediction of the random effect of grey matter (yellow circles), and age (young vs. older

adults; purple circles) plotted against the random intercept of conditions, i.e. the predicted value of the centre of pressure (CoP) activity. Each circle represents a condition

(7 platform � 2 vision conditions). Both the negative effect of grey matter density and the positive effect of age on CoP activity were reinforced when the intercepts of the

conditions increased, i.e., when the difficulty of the task increased. (D) Distribution of the centre of pressure activity within the sample. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Predicting CoP activity: Age vs. grey matter density

Combining the fixed and random effects of age and GM allowed
model 4 to predict the data more accurately than model 2
(DAIC = 6.5609) and 3 (DAIC = 39.234). The fixed effect of age
(b = 0.193, df = 63.1, t = 1.980, p = 0.037, one-tailed; Table 1 and
Fig. 2B) and GM (b = �2.571, df = 62.8, t = �1.822, p = 0.026, one-
tailed) on CoP activity were still significant, indicating that older
age and lower GM were associated with higher instability. The
random effects of age (s2 = 0.028) and GM (s2 = 2.008) on CoP
activity added prediction power to the model, indicating that
balance control was more dependent on age and GM in more
difficult than in easier conditions.

When compared to model 2, the fixed and the random effect of
age weakened in model 4. This result suggested that the variability
assigned to age in model 2 was in fact at least partially due to the
variability of GM. Specifically, at the fixed level, the effect of age on
CoP activity weakened from model 2–4 (b = 0.291 to b = 0.193).
This result indicated that part of this fixed effect was incorrectly
attributed to age in model 2 and was actually due to GM. At the
random level, adding GM in model 4 reduced the random effect of
age by 28.1%, indicating that part of the random effect of age at the
level of conditions was again incorrectly attributed to age in model
2 and was actually due to GM. Furthermore, adding GM to the
model reduced the correlation between the intercepts of condi-
tions and age (from r = 0.709 to r = 0.448). This result indicated
that, once GM was added to the model, the effect of age was less
dependent on the intercepts of the conditions (i.e., of their level of
difficulty). The negative correlation between the intercepts of the
conditions and GM at the random level (r = �0.9974) was
particularly high as compared to the positive correlation with
age (r = 0.448; Table 1 and Fig. 2C), suggesting that GM was more
consistent than age in predicting balance instability across
conditions.
4 Using a log transform on the dependent variable, this correlation was brought

back to �0.95, whereas all other parameters stayed essentially unchanged. This

shows that the random effect of GM is statistically separate from the intercept.
3.4. Predicting CoP activity: Age, grey matter density, and white

matter microstructural organisation

Model 5 showed a significant fixed effect of WM on CoP activity
(b = �2.243, df = 62.2, t = �1.749, p = 0.043, one-tailed; Table 1)
indicating that, on average, participants with lower WM showed
greater balance instability than participants with higher WM.
However, unlike the fixed effect of GM (model 4), the fixed effect of
WM on CoP activity disappeared when the effect of age was added
(model 6). This result suggested that WM was not related to
balance stability. Model 7 confirmed that both age and GM, but not
WM, had a specific contribution to balance stability. This result
implies that in conjunction with age, GM accounted for unique
variance in balance stability, whereas the unique variance of WM
in conjunction with age was negligible.

3.5. Falls and grey matter in older adults

Results of the model testing the protective role of GM in falls in
older adults revealed a significant age � GM interaction
(b = �10.846, Z = �2.076, p = 0.037; Table 2).5 This interaction
indicated that the fixed effect of age on the probability of falls
was dependent on GM. Specifically, age increased the probability of
falls in older adults with low (GM mean � 1 SD; b = 0.332, Z = 2.495,
p = 0.012), but not moderate (GM mean; b = 0.132, Z = 1.459,
p = 0.144) or high GM (GM mean + 1 SD; b = �0.066, Z = �0.506,
p = 0.612). To evaluate the effect size, we computed the odds ratio for
participants with a low level of GM between older old (mean
age + 1 SD; i.e., 74.5 years) and younger old adults (mean age � 1 SD;
i.e., 64.5 years). It was equal to 27.7, meaning that the odds of losing
balance was 27.7 times higher in older than younger old adults
when the level of GM was low. The odds ratio for participants
with moderate or high GM were 3.8 and 0.5, respectively, but not
significant (Fig. 3).
5 The same model was used for WM but revealed no main effect of Age (p = 0.26)

and WM (p = 0.99) and no interaction effect (p = 0.56).



Table 2
Summary of the mixed-effects model analysis for predicting falls. GM, grey matter

density; *p < 0.05; ***p < 0.001.

Falls

Fixed effects b SE p-Value

Intercept �15.807 3.760 <0.001***

Height �0.009 0.054 0.859

Eyes open (vs. eyes closed) 3.684 0.579 <0.001***

Age (continuous) 0.132 0.091 0.144

GM 0.613 25.477 0.980

Age � GM �10.846 5.225 0.037*

Random effects s2

Participants

Intercept 3.857

Condition

Intercept 87.837

Akaike information criterion 246.4

Fig. 3. Odds ratio of falls between younger old adults and older old adults (mean

age � 1 SD; mean age + 1 SD, respectively) as a function of brain grey matter

density: low, moderate, and high (GM mean � 1 SD; GM mean; GM + 1 SD,

respectively). *p < 0.05; GM, grey matter density; SD, standard deviation.
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In summary, (i) older adults showed higher instability than
young adults, irrespective of GM density, (ii) participants with
lower GM density showed higher instability than participants with
higher GM density, irrespective of age, (iii) these effects were
reinforced when the level of task difficulty increased, (iv) GM
predicted balance instability beyond age, and GM predicted
balance loss in older adults (v). Conversely, WM was not predictive
of balance instability or balance loss.

4. Discussion

In this study, we combined brain structural imaging and mixed-
effects model analyses to investigate the extent to which age (young
vs. older adults), GM and WM predict balance instability. Results
showed that the negative effect of age on balance stability was
reinforced as the level of difficulty of the balance task increased. This
result supports previous studies showing that task difficulty is a key
factor when investigating age-related differences in balance control
[19]. Our results also revealed that GM density, but not WM,
predicted balance instability irrespective of participants’ age. This
finding supports and extends previous results, which showed that
structural grey matter metrics were correlated with balance
performance in older adults [4,6], to the group of young adults.
Furthermore, our results showed that the positive effect of GM
density on balance stability was stronger in more difficult conditions
than in easier conditions. Therefore, future studies investigating the
specific neural correlates of balance instability could make use of
difficult tasks that are more sensitive to differences in GM density.
Results also revealed that GM density was at least as critical as age
for predicting balance instability and may be more consistent across
different levels of difficulty. In sum, for balance stability, the level of
whole-brain GM is at least as decisive as being young or old. Finally,
this study revealed that age has a dramatic effect on loss of balance in
older adults with a low GM, while older adults with a moderate or
high GM appear better protected against this effect of ageing.
Training-induced grey-matter expansion [6] makes our results
extremely encouraging for the prevention of falls and the promotion
of functional independence.
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