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Abstract
Physiological aging affects brain structure and function impacting morphology, connectivity, and perfor-

mance. However, whether some brain connectivity metrics might reflect the age of an individual is still

unclear. Here, we collected brain images from healthy participants (N = 155) ranging from 10 to

80 years to build functional (resting state) and structural (tractography) connectivity matrices, both data

sets combined to obtain different connectivity features. We then calculated the brain connectome

age—an age estimator resulting from a multi-scale methodology applied to the structure–function

connectome, and compared it to the chronological age (ChA). Our results were twofold. First, we found

that aging widely affects the connectivity of multiple structures, such as anterior cingulate and medial

prefrontal cortices, basal ganglia, thalamus, insula, cingulum, hippocampus, parahippocampus, occipital

cortex, fusiform, precuneus, and temporal pole. Second, we found that the connectivity between basal

ganglia and thalamus to frontal areas, also known as the fronto-striato-thalamic (FST) circuit, makes the

major contribution to age estimation. In conclusion, our results highlight the key role played by the

FST circuit in the process of healthy aging. Notably, the same methodology can be generally applied

to identify the structural–functional connectivity patterns correlating to other biomarkers than ChA.
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1 | INTRODUCTION

Aging is a dynamical process that encompasses a systemic time-

dependent decline on multiple scales from biological to psychological

and social levels. Interestingly, individuals with the same chronological

age (ChA) might exhibit different trajectories of age-related biological

deterioration, as measured by biomarkers of functional performance,

tissue integrity, and metabolic health (Khan, Singer, & Vaughan, 2017;

Steves, Spector, & Jackson, 2012). This mismatch reflects two differ-

ent concepts of age. One is ChA, calculated as the time running as

birth, whereas the other is the biological age, which, irrespective of

birth year, is based on the level of biological maturation at a given

time. The mismatch between chronological and biological aging has
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gained major scientific interest in the past years due to its potential

implication for health and disease of age-related molecular, genetic,

cellular and organ-specific dynamics and their genetic, epigenetic, and

environmental modulators (Jia, Zhang, & Chen, 2017). Indeed, it is well

established that aging is a major risk factor for most of the late-onset

diseases such as cancer, cardiovascular disease, diabetes, and neuro-

degenerative diseases (Fulop et al., 2010).

In relation to brain biological aging, psychophysical, neuropsycho-

logical, and physiological studies support that functional performance

of the brain declines with age, with an impact on cognition (long-term

and working memory, executive functions, conceptual reasoning, and

processing speed; Grady, 2012; Park et al., 1996), mood (anxiety and

depression; Knight & Durbin, 2015), circadian behavior (disruption of

amplitude and period length), and sleep cycle (poor sleep quality and

delayed sleep onset latency; Kondratova & Kondratov, 2012).

These changes in brain performance occur in parallel with well-

established age-related macrostructural and microstructural brain vari-

ations. At the microstructural level, age has been associated with

alterations in synaptic structures (decreased synaptic density and syn-

aptic terminals), aggregation of abnormal proteins outside and inside

neurons, such as plaques and tangles, reduced neurogenesis and syn-

aptic plasticity, abnormal increase of astrocytes and oligodendrocytes,

altered myelination, and reduction of nerve growth factor concentra-

tion (LaPoint et al., 2017; Peters, 2002; Price & Morris, 1999). How-

ever, whether aging reduces the number of neurons is still under

debate, as several post-mortem human and primate studies support

that the cortical cell number remains unchanged (Morrison & Hof,

1997), suggesting that neuronal shrinkage occurring along the lifespan

(rather than cell loss) is the main process underlying brain atrophy.

At the macroscopic level, both global and regional atrophies are

the most reported characteristics of the aging brain, supported by sev-

eral post-mortem and MRI studies. Neuroimaging studies have shown

that the overall brain volume varies with age in an “inverted-U” fash-

ion, increasing volume in about 25% from childhood to adolescence,

then remaining constant for about three decades to finally decay

down to childhood size at late ages (Courchesne et al., 2000). This

pattern of age-related brain atrophy along the lifespan has been asso-

ciated with the deterioration of cognitive performance in the healthy

population (Ritchie et al., 2015). Of note, age-related gray and white

matter atrophies are not homogeneous, with higher atrophy observed

in white matter as compared to cortical gray matter (Jernigan et al.,

2001; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003) and

regionally, with more prominent atrophy in hippocampus (West,

1993), prefrontal and parietal cortices (Raz et al., 1997; Salat et al.,

2004; Sullivan & Pfefferbaum, 2007). In contrast, the volume of the

cerebrospinal space (ventricles, fissures, and sulci) increases with age

(Resnick et al., 2003).

Modern techniques such as diffusion tensor imaging (DTI) have

allowed the in vivo inspection of age-related structural connectivity

(SC) to show (in agreement with histological findings) a cortical discon-

nection (de Groot et al., 2016; Mårtensson et al., 2018), which triggers

a decrease of functional integration of some of the cognitive networks

(Grady, 2012; O'Sullivan et al., 2001). Several DTI studies in healthy

aging support an association between white matter atrophy and a

widespread degeneration of white matter fibers, with age-related

changes predominantly affecting frontal tracts (O'Sullivan et al., 2001)

and gradually extending to posterior tracts (Davis et al., 2009), a pat-

tern that inverts the sequence of myelination during early brain devel-

opment and that supports the “last-in-first-out principle” for white

matter deterioration along the lifespan.

The development of resting and task-based functional MRI (fMRI)

has provided in vivo functional correlates to the observed age-related

atrophy and SC brain disconnection, showing consistently age-related

regional changes in the patterns of brain activation, with decreased

activity in the occipital lobe and increased activity in the frontal lobe

across a variety of tasks (Grady, 2012). Functional connectivity

(FC) studies at rest have gone a step further and demonstrated that

aging not only induces regional brain activity changes but also a

decrease in FC of large-scale brain networks, specifically between

anterior and posterior regions, including superior and middle frontal

gyrus, posterior cingulate, middle temporal gyrus, and the superior

parietal region (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008).

The combination of SC and FC analyses by complex network

approaches have led to the conceptualization of brain networks as a

connectome (Feldt, Bonifazi, & Cossart, 2011; Sporns, 2011), and its

correlates with age and disease has gained major attention in funda-

mental neuroscience (Crossley et al., 2014). Complex network

approaches have highlighted the key role played by several network

features in aging and brain diseases, such as network hubness, node

efficiency, network modularity, and hierarchical organization. The

effects of aging on network modularity have shown a decrease in net-

work segregation along the lifespan (Chan, Park, Savalia, Petersen, &

Wig, 2014; King et al., 2017; Song et al., 2014), a mechanism support-

ing the loss of functional specialization at the cognitive level (Chan,

Alhazmi, Park, Savalia, & Wig, 2017).

Moreover, combined SC and FC analyses have suggested that not

only segregation (i.e., network modularity) decreases with age but

integration (i.e., node efficiency) increases (Hagmann et al., 2010) in a

counterbalanced manner that ensures network efficiency along the

lifespan. Others, however, have suggested that small-worldness and

network modularity remain stable along the lifespan, despite a consid-

erable reduction in the number of white matter tracts connecting dif-

ferent regions (Lim, Han, Uhlhaas, & Kaiser, 2015). Analyses of

longitudinal data, less abundant than cross-sectional data, have shown

that the brain maps of FC variations by age do not match well with

the maps of SC (Fjell et al., 2017), highlighting that FC and SC are

affected by age in a more independent manner than previously

thought.

The combined FC and SC analyses also have revealed that the

deterioration of the cortical to subcortical connections plays a key role

for the integration of several resting state networks underlying cogni-

tive processes, such as executive function, processing speed, and

memory (Ystad et al., 2011). By calculating node-degree distributions,

other studies have shown an age-related connectivity reduction of

network hubs (Betzel et al., 2014), supporting the hypothesis that the

alteration of network hubs might trigger brain aging similar to what

occurs in a plethora of other brain pathologies (Crossley et al., 2014).

Very recently, new computational strategies such as machine

learning have been applied to the process of aging. In particular, a

new paradigm denominated brain-predicted age (BPA) has been
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introduced to quantify the mismatch between age-associated brain

alterations and ChA. Very striking, the use of BPA have been already

used in different diseases, including traumatic brain injury (Cole et al.,

2015), mild cognitive impairment (MCI) and Alzheimer’s disease

(Gaser, Franke, Klöppel, Koutsouleris, & Sauer, 2013), HIV infection

(Cole, Underwood, et al., 2017), and schizophrenia (Schnack et al.,

2016). A critical issue in all these studies is the selection of an ade-

quate approach to achieve the highest robustness and precision for

the mismatch quantification between chronological and brain ages.

Very strikingly, the combined rather than separate analysis of SC and

FC has shown to provide a better estimation of ChA (Zimmermann

et al., 2016).

Although previous studies have addressed BPA by separate or

combined analyses of SC and FC, none of them has proposed an opti-

mal method that, applying multi-scale complex network analysis to the

structural–functional connectome, simultaneously identifies age-related

brain changes while calculating BPA. In this study, we extend previous

work (Cole, Underwood, et al., 2017; Cole et al., 2015; Cole, Ritchie

et al., 2017; Dosenbach et al., 2010; Franke, Ristow, & Gaser, 2014;

Franke et al., 2010; Gaser et al., 2013; Han, Peraza, Taylor, & Kaiser,

2014; Koutsouleris et al., 2014; Liem et al., 2017; Luders, Cherbuin, &

Gaser, 2016; Steffener et al., 2016) and build a novel data-driven

approach that is applied to the multi-scale brain hierarchical partition

(Diez, Bonifazi, et al., 2015) and estimates ChA exclusively based on a

combination of SC and FC biomarkers. We denote this as the brain con-

nectome age (BCA). Therefore, in contrast to BPA, no morphological

features are incorporated into BCA. Notably, and distinctly from previ-

ous studies mostly showing that the hippocampus and its connectivity

is the central circuit for tracing the aging process, BCA identifies the

key role of the fronto-striato-thalamic (FST) circuit as the main network

biomarker correlating with aging. Finally, we discuss the general impli-

cations and applications of the described methodology to a broader

umbrella of key biomedical problems.

2 | MATERIAL AND METHODS

2.1 | Participants

Participants were recruited in the vicinity of Leuven and Hasselt

(Belgium) from the general population by advertisements on web-

sites, announcements at meetings and provision of flyers at visits of

organizations, and public gatherings (PI: Stephan Swinnen). A sample

of N = 155 healthy volunteers (81 females) ranging in age from

10 to 80 years (mean age 44.4 years, SD 22.1 years) participated in

the study. All participants were right-handed, as verified by the

Edinburgh Handedness Inventory. None of the participants had a

history of ophthalmological, neurological, psychiatric, or cardio-

vascular diseases potentially influencing imaging or clinical

measures. Informed consent was obtained before testing. The

study was approved by the local ethics committee for biomedical

research, and was performed in accordance with the Declaration of

Helsinki.

2.2 | Imaging acquisition

Magnetic resonance imaging (MRI) scanning was performed on a Sie-

mens 3T MAGNETOM Trio MRI scanner with a 12-channel matrix

head coil.

2.2.1 | Anatomical data

A high-resolution T1 image was acquired with a 3D magnetization pre-

pared rapid acquisition gradient echo (MPRAGE): repetition time

(TR) = 2,300 ms, echo time (TE) = 2.98 ms, voxel size = 1× 1× 1.1mm3,

slice thickness = 1.1 mm, field of view (FOV) = 256 × 240 mm2,

160 contiguous sagittal slices covering the entire brain and brainstem.

2.2.2 | Diffusion tensor imaging

A DTI SE-EPI (diffusion weighted single shot spin-echo echo-planar

imaging [EPI]) sequence was acquired with the following parameters:

TR = 8,000 ms, TE = 91 ms, voxel size = 2.2 × 2.2 × 2.2 mm3, slice

thickness = 2.2 mm, FOV = 212 × 212 mm2, 60 contiguous sagittal

slices covering the entire brain and brainstem. A diffusion gradient

was applied along 64 noncollinear directions with a b value of

1,000 s/mm2. Additionally, one set of images was acquired without

diffusion weighting (b = 0 s/mm2).

Resting state functional data was acquired with a gradient EPI

sequence over a 10 min session using the following parameters:

200 whole-brain volumes with TR/TE = 3,000/30 ms, flip angle = 90�,

inter-slice gap = 0.28 mm, voxel size = 2.5 × 3 × 2.5 mm3, 80 × 80

matrix, slice thickness = 2.8 mm, 50 oblique axial slices, interleaved in

descending order.

2.3 | Imaging preprocessing

2.3.1 | Diffusion tensor imaging

We applied DTI preprocessing similar to previous work (Alonso-

Montes et al., 2015; Amor et al., 2015; Diez, Bonifazi, et al., 2015;

Diez et al., 2017; Kroos et al., 2017; Marinazzo et al., 2014; Rasero,

Pellicoro, et al. 2017; Rasero, Alonso-Montes, et al. 2017; Stramaglia

et al., 2017) using FSL (FMRIB Software Library v5.0) and the Diffu-

sion Toolkit. First, an eddy current correction was applied to over-

come the artifacts produced by variation in the direction of the

gradient fields of the MR scanner, together with the artifacts pro-

duced by head motion. To ensure that correlations with age were not

due to differences in head motion (i.e., to correct for the effect that

older people move more), the average motion of each participant was

used as a covariate of noninterest in the statistical analyses. In particu-

lar, the participant’s head motion was extracted from the transforma-

tion applied at the step of eddy current correction. The motion

information was also used to correct the gradient directions prior to

the tensor estimation. Next, using the corrected data, a local fitting of

the diffusion tensor per voxel was obtained using the dtifit tool incor-

porated in FSL. Next, a fiber assignment by continuous tracking algo-

rithm was applied (Mori, Crain, Chacko, & van Zijl, 1999). We then

computed the transformation from the Montreal Neurological Insti-

tute (MNI) space to the individual-participant diffusion space and pro-

jected a high-resolution functional partition to the latter, composed of

2,514 regions and generated after applying spatially constrained
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clustering to the functional data (Craddock, James, Holtzheimer,

Xiaoping, & Mayberg, 2012). This is an unsupervised clustering

method, that is, after providing the 2,514 regions as an input (the clus-

ters) that spatially constrains the different voxels belonging to the

same region to be spatially contiguous. The best solution is the one

that maximizes both within-region similarity and between-region

difference.

Following this procedure we built 2,514 × 2,514 SC matrices,

each per participant, by counting the number of white matter stream-

lines connecting all region pairs within the entire 2,514 regions data

set. Thus, the element matrix (i,j) of SC is given by the streamlines

number between regions i and j. SC is a symmetric matrix, where con-

nectivity from i to j is equal to that from j to i. Exclusion criteria was

based on not having the average head motion higher than the mean +

2 SD. None of the participants were excluded based on this

constraint.

2.3.2 | Functional MRI

We applied resting fMRI preprocessing similar to previous work

(Alonso-Montes et al., 2015; Amor et al., 2015; Diez, Erramuzpe,

et al., 2015; Diez, Bonifazi, et al., 2015; Diez et al., 2017; Mäki-Mart-

tunen, Diez, Cortes, Chialvo, & Villarreal, 2013; Marinazzo et al.,

2014; Rasero, Pellicoro, et al., 2017; Stramaglia et al., 2016, 2017;

Stramaglia, Angelini, Cortes, & Marinazzo, 2015) using FSL and AFNI

(http://afni.nimh.nih.gov/afni/). First, slice-time correction was

applied to the fMRI data set. Next, each volume was aligned to the

middle volume to correct for head motion artifacts. After intensity

normalization, we regressed out the motion time courses, the average

cerebrospinal fluid (CSF) signal and the average white matter signal.

Next, a band pass filter was applied between 0.01 and 0.08 Hz

(Cordes et al., 2001). Next, the preprocessed functional data was spa-

tially normalized to the MNI152 brain template, with a voxel size of

3 × 3 × 3 mm3. Next, all voxels were spatially smoothed with a 6 mm

full width at half maximum isotropic Gaussian kernel. Finally, in addi-

tion to head motion correction, we performed scrubbing, by which

time points with frame-wise displacement >0.5 were interpolated by a

cubic spline (Yan et al., 2013). We further removed the effect of head

motion using the global frame displacement as a noninterest covariate,

as old participants moved more than the young (when representing

the mean frame-wise displacement as a function of age provided a

correlation value equal to 0.51 with a p value = 1E-11), and this fact

introduced nuisance correlations with age.

Finally, FC matrices were calculated by obtaining the pairwise

Pearson correlation coefficient between the resting fMRI time series.

Exclusion criteria was based on not having more than 20% of the time

points with a frame-wise displacement >0.5. Two participants were

finally excluded.

2.4 | Brain hierarchical atlas

The brain was divided in 2,514 brain regions that we grouped into

modules using the brain hierarchical atlas (BHA), recently developed

(Diez, Bonifazi, et al., 2015) and applied by the authors in a traumatic

brain injury study (Diez et al., 2017). The BHA is available to download

at http://www.nitrc.org/projects/biocr_hcatlas/. A new Python

version, that was developed during Brainhack Global 2017—Bilbao,

can be download at https://github.com/compneurobilbao/bha.

The use of the BHA guarantees three conditions simultaneously:

(1) that the dynamics of voxels belonging to the same module is very

similar, (2) that those voxels belonging to the same module are struc-

turally wired by white matter streamlines; see in Figure 1 the high cor-

respondence between SC and FC modules, and (3) when varying the

level of the hierarchical tree, it provides a multi-scale brain partition,

where the highest dendrogram level M = 1 correspond to all 2,514

regions belonging to a single module (coincident with the entire brain),

whereas the lowest level M = 2,514 correspond to 2,514 isolated

modules (all of them composed of only one region).

It was also shown in Diez, Bonifazi, et al. (2015), that the hierar-

chical brain partition with M = 20 modules was optimal based on the

cross-modularity X, an index defined as the geometric mean between

the modularity of the structural partition, the modularity of the func-

tional partition, and the mean Sorensen similarity between modules

existing in the two structural and functional partitions.

2.5 | Multi-scale structure–function correlo-
dendrograms of brain aging

From both SC and FC matrices, we built the correlo-dendrogram

(CDG) of brain aging by correlating ChA with the values of internal

(intra-module) and external (inter-module) connectivity at each den-

drogram level M of the BHA, and, by tuning the parameter M, we per-

formed a multi-scale connectivity analysis (Supporting Information

Figure S1). For each module and participant, four different classes of

features were built: functional internal connectivity (FIC), functional

external connectivity (FEC), structural internal connectivity (SIC), and

structural external connectivity (SEC; Figure 2). Given a brain module

composed by a set of R regions, its associated FIC (SIC) was calculated

as the sum of the functional (structural) weights of all the links

between the elements of R, while FEC (SEC) was defined as the sum

of the functional (structural) weights of all the links connecting the

elements of R to other regions in the brain.

One of the properties of the BHA is that at each M level only one

of the branches of the hierarchical tree divides in two, and therefore

only two modules at each level are new with respect to the (M − 1)

upper levels (Figure 2). Taking into consideration this point together

with the fact that we started our analysis at the level of M = 20 and

arrived up to M = 1,000, we established the Bonferroni significance

threshold equal to 0.05/[20 + 2 × (1000 − 20)] for the correlation

between age and connectome metrics (FIC, SIC, FEC, SEC). While the

BHA comprises 2,514 ROIs the final level of M = 1,000 was chosen to

compromise between the possibility to reach a very high spatial resolu-

tion (in average, each of the modules at the partition level M = 1,000

contain 48 voxels) while limiting the impact of the Bonferroni correc-

tion for multiple comparisons on the detection of significant features.

To localize age-affected brain areas at both functional and struc-

tural levels (rather than separate FC or SC analyses), and thus obtain-

ing a major benefit from the combination of functional and structural

data, we searched for brain regions such that their p values were

determined by the square root of the product of the SC p value multi-

plied by the FC p value, and chose the ones that survived after
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Bonferroni correction. Consequently, the value of the structure–

function age correlation was calculated as the geometric mean of the

two correlation values, one achieved by the functional feature and the

other by the structural one.

2.6 | Brain connectome age

To estimate age, we performed a multi-scale methodology obtained

from the structure–function connectome. We first defined for each

participant n the vector xn � 1xn1x
n
2� � �xnK−1

� �T
of K components, each

one corresponding to one connectivity feature previously obtained by

the structure–function CDGs, and where T denotes the transpose

operator. The estimated age for the participant n was calculated by a

linear combination of the features, that is,

tn =ω0 +
XK−1

j=1
ωjx

n
j + ϵn, ð1Þ

where ϵn is a zero mean Gaussian random variable with variance σ2,

and ω ≡ (ω0ω1ω2� � �ωK − 1)
T is the weight vector. For P different partic-

ipants, using Equation (1), we defined the error function as

E ωð Þ= 1
2

XP

n=1
tn−ω0−

XK−1

j=1
ωjx

n
j

n o2
, ð2Þ

which allows to calculate the weight vector ω that minimizes the

error function (i.e., which is solution of the first derivative of E(ω)

with respect to ω equal to zero). Such a minimum defines the maxi-

mum likelihood estimator (MLE), which can be analytically solved

(Bishop, 2006; Cortes, Lopez, Molina, & Katsaggelos, 2012) and is

given by:

wMLE = φTφ
� �−1

φTt ð3Þ

where the exponent −1 denotes the inverse of the matrix,

t ≡ (t1t2t3� � �tP)T the vector of P different estimations and ϕ the so-

called design matrix, that is,

FIGURE 1 Robustness of the brain hierarchical atlas along lifespan. (a) Common template normalization (middle) for young (top) and old brains

(bottom). Ventricle 3D segmentation has been performed for a young (17 years, filled in blue) and old participant (72 years, contours marked in
red). Both segmentations are superimposed onto the common population template (middle row). For the connectivity analysis, regions located
within the volume defined by the biggest ventricle size across all the participants have been ignored to correct for trivial age-effects in the results
of age estimation (i.e., to correct for the effect that older people have bigger ventricle volume). (b) Brain hierarchical atlas (BHA) parcellation for
young (top) and old (bottom) populations shows the strong correspondence between functional modules (depicted as yellow squares in the matrix
diagonal of the functional connectivity matrix, FC) and structural modules (plotted in the SC matrix). FC and SC matrices are the result of
averaging FC and SC individual matrices in two different populations, young (age < 25.1 years, N = 54 participants) and old (age > 61.9 years,
N = 54 participants). Both connectivity FC and SC matrices have been reordered according to the BHA (here represented at the level of M = 20
modules). FC is defined by the pairwise Pearson correlation between rs-fMRI time series while SC is defined by the streamline counting between
region pairs (here binarized just for illustration purposes) [Color figure can be viewed at wileyonlinelibrary.com]
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ϕ�

1x11x
1
2� � �x1K−1

1x21x
2
2� � �x2K−1
..
.

1xP1x
P
2� � �xPK−1

0
BBBBB@

1
CCCCCA
: ð4Þ

When the entire data set is used to calculate wMLE, the estimation

error decreases when the number of features increase (that is, the more

features we add into the model, the better the estimation), but this strat-

egy also provides a very high variance estimate, meaning that, when

estimating the age using MLE in a different data set can produce a very

high error. Splitting the entire data in training and testing sets can solve

this problem, also known as overfitting (James, Witten, Hastie, & Tib-

shirani, 2013). Therefore, to calculate the mean absolute error (MAE),

for each cross-validated experiment we performed data splitting, by ran-

domly choosing 75% of the data set (N1 = 115) for training (i.e., for cal-

culating the wMLEsolution) and the remaining 25% (N2 = 38) for testing

(i.e., to calculate the MAE) within each cross-validated experiment.

As a metric for the estimation quality, the MAE was calculated on

the test data for each cross-validated experiment using

MAE Kð Þ= 1
N2

XN2

n=1
ChAn−BCAn Kð Þj j, ð5Þ

where |.| denotes absolute error and where we defined the BCA for

participant n as

BCAn Kð Þ�ωMLE
0 +

XK−1

j=1
ωMLE
j xnj , ð6Þ

where wMLE is defined in Equations (3) and (4).

Remark that although in principle there were many potential fea-

tures (four classes—FIC, FEC, SIC, and SEC—per module and number

of modules M varying from 20 to 1,000), finally only K of them were

introduced into the MLE to estimate age. Therefore, and by construc-

tion, the MLE solution depends on K (see next subsection for the

choice for the K features). A diagram for the BCA method is also

shown in Supporting Information Figure S2.

2.7 | Optimization of the MLE

To get the optimal model, that is, the K features that better estimate

age, we followed this procedure:

1. For K = 1, we considered the feature that best correlated

with ChA.

FIGURE 2 Schematic representation of the structure–function multi-scale approach. Left-top: First, we have made use of BHA to define

different modules resulting from a hierarchical agglomerative clustering. Right-top: The multi-scale brain partition shows how modules divide
when going down along the tree (here, we only depict a subpart of the tree that goes from 20 to 120 modules). The gray-colored modules
represents the M = 20 brain partition. Bottom: For the tree level of M = 20 and for each participant, we calculated the structural/functional
internal connectivity (green rectangle) and structural/functional external connectivity (red rectangle), by summing, respectively, the edge weights
within and leaving out that module. The approach becomes multi-scale when applying the same procedure to all the modules across all the
20 ≤ M ≤ = 1,000 levels of the hierarchical tree. Shaded boxes represent the modules present at the partition level M = 20. Note that the
modules are differentially present in previous and following partitions. Thus, the number of partition levels in which a given module is present,
represents a stability measure of that module in the tree division [Color figure can be viewed at wileyonlinelibrary.com]

4668 BONIFAZI ET AL.

http://wileyonlinelibrary.com


2. The K = 2 feature was chosen among all the remaining ones by

finding the feature such that after U = 100 experiments of ran-

domly choosing 75% of the data set for training and 25% for test-

ing, the mean MAE achieved by the two features (the one found

in stage 1 plus the new one) was minimal.

3. The K = 3 feature was chosen among all the remaining ones by

finding the feature such that after U = 100 experiments of ran-

domly choosing 75% of the data set for training and 25% for test-

ing, the mean MAE calculated with three features (the previous

two features found in stage 2 plus the new one) was minimal.

4. Following this strategy, the curve MAE(K) had a minimum value as

K increases, that defined the optimal model which has K features.

2.8 | Adding nonlinearities to the age estimation

Although Equation (1) accounts for a linear dependence on connectivity

features, the MLE strategy is more general and allows to incorporate

different classes of nonlinearities, such as quadratic or higher-order

polynomial terms, or other functions such as, for instance, Gaussian,

Exponential or Sigmoid, just by adding new columns accounting for

such dependencies into the design matrix given by Equation (4) (for

further details see (Bishop, 2006). In this work, we study linear and

quadratic contributions into the MLE estimation.

2.9 | Labelling of anatomical regions

The anatomical identification for each of the 2,514 brain regions has

been performed using the automated anatomical labeling (AAL;

Tzourio-Mazoyer et al., 2002) brain atlas, and as a consequence, the

anatomical labels used in this work follow the ones existing in the

AAL atlas.

2.10 | Removal of regions affected by the increment
of ventricular space along lifespan

Ventricular space increases along the lifespan in a manner that, after

transforming all images to a common space, some regions surrounding

the ventricular space for the younger population are occupied by the

ventricular space of older participants. To remove this effect, that

introduces a strong bias in the age estimation, we deleted these

regions by (after projecting all images to the common space) searching

for the participant with the highest ventricular volume, segmenting

this space and treating it as mask to discard (for the connectivity anal-

ysis) all the regions within this space in all the participants. Figure 1a

illustrates this procedure.

2.11 | An alternative method based on probabilistic
tractography to calculate SC matrices

Probabilistic tractography was calculated using FSL. We first esti-

mated a probabilistic model to compute fiber orientation using bed-

post (paper: https://www.ncbi.nlm.nih.gov/pubmed/17070705).

Second, we calculated connectivity matrices (one per subject) using

probtrackx2 and 100 pathways per voxel. Connectivity matrices were

calculated without introducing any threshold at the probability to

define a connection, and therefore, connectivity features were

obtained summing in a weighted manner over all connection probabili-

ties that each modules has to the rest of the brain or within itself.

3 | RESULTS

A population of N = 155 healthy participants (81 female, 74 male)

with age varying from 10 to 80 years (mean = 44, SD = 22) was used

for the study. Triple acquisitions including structural, diffusion tensor,

and resting functional imaging were acquired for each participant.

We used the multi-scale BHA with 2,514 regions and calculated

for each participant the SC and FC connectivity matrices, represent-

ing, respectively, the pairwise region streamline number and the pair-

wise Pearson correlation coefficient between the resting fMRI time

series.

We first validated the use of BHA for the study of aging by show-

ing a high correspondence between the modules in SC and those in

FC independently on participant age. In particular, Figure 1 illustrates

for two populations, one young (age < 25.1 years, N = 54 partici-

pants) and other old (age > 61.9 years, N = 54 participants), the corre-

spondence between SC and FC by assessing cross-modularity (X)

(Diez, Bonifazi, et al., 2015), obtaining X = 0.312 for the young popu-

lation and X = 0.309 for the old, and therefore showing that cross-

modularity was 99% preserved along the lifespan. Of note, the two

values of cross-modularity (young and old) are similar to the ones

obtained in two different data sets, one acquired in our Hospital and

from the Human Connectome Project, cf. Supporting Information

Figure S8 in Diez, Bonifazi, et al., (2015), providing robustness across

different data sets.

Next, to possibly achieve the best spatial resolution while limiting

the strict constraints due to the statistical assessment of very large

number of features (multiple-comparison problem), we calculated for

increased levels M of the BHA (with 20 ≤ M ≤ 1,000), four different

module features (Figure 2): (1) the FIC, (2) the FEC, (3) the SIC, and

(4) the SEC. This approach allowed us to build a CDGs (correlation

between age and each module connectivity within the dendrogram) to

find the highest correlation between module connectivity and ChA,

while maximizing the spatial resolution in a multi-scale manner. The

structure–function CDG was next obtained as the geometric mean

between the correlations achieved from the structural and functional

CDG separately. Figure 3 illustrates the maximum of the age correla-

tion across the multi-scale partition, for external module connectivity

features (Figure 3a), for internal module connectivity (Figure 3b) and

for three classes of connectivity features: linear (left column), qua-

dratic (middle column), and only quadratic (right column), the latter

obtained as the brain maps difference between the quadratic case and

the linear one.

3.1 | Brain areas correlating with age in relation
to external connectivity

Figure 3a shows the results of the maximum age correlations across

multi-scale partitions obtained for the external connectivity analysis

(i.e., inter-module connectivity therefore generally associated to longer

fiber connections). Significant linear connectivity features (left column)
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were found bilaterally in several cortical and subcortical AAL regions:

frontal superior and middle, cingulum middle, parahippocampus, calcar-

ine, cuneus, lingual, occipital superior, middle and inferior, fusiform, pre-

cuneus, caudate, putamen, thalamus, temporal pole middle, and

temporal inferior. When looking at the quadratic features (middle col-

umn), the most striking difference was represented by the presence of

the prefrontal and occipital cortices, not observed when only linear

terms were taken into account and highlighted in the brain maps of the

significant quadratic-but-not-linear features (right column).

3.2 | Brain areas correlating with age in relation to
internal connectivity

Figure 3b shows the results of the maximum age correlations across

the multi-scale partition obtained for the internal connectivity analysis

(i.e., intra-module connectivity and generally associated to shorter

fiber connections). Significant linear connectivity features were found

bilaterally in the insula, cingulum anterior, calcarine, cuneus, occipital

superior, middle and inferior, fusiform, parietal superior, angular, pre-

cuneus, thalamus, temporal middle and inferior, and cerebellum. When

looking at the quadratic features (middle column), the most relevant

result was the presence of the memory (hippocampus and temporal

pole) and limbic (amygdala) circuits, which was not observed when

only linear terms where considered into the model (right column).

3.3 | Network homeostasis

As the structure–function CDG does not provide any information on

the individual contribution that either the structural or the functional

feature has on the correlation value, by looking at the linear model we

separated the four possible cases of combined correlations (increased

structural and functional; decreased structural and functional;

increased structural and decreased functional; decreased structural

and increased functional) and reported them separately in Figure 4.

The external connectivity analysis (Figure 4, left column) identified

brain regions with opposing tendencies, that is, regions where the SC

decreased with age while the FC increased (blue rectangle), a mecha-

nism representing network homeostasis. These regions were found bilat-

erally in the frontal superior and middle, calcarine, cuneus, lingual,

occipital superior, middle and inferior, and precuneus. Regions for which

both structural and functional connectivities decreased with age (green

rectangle) were found bilaterally in the parahippocampus, fusiform, cau-

date, putamen, thalamus, and temporal pole middle and inferior.

The internal connectivity analysis (Figure 4, right column) did not

identify any brain region in which the SC decreased with age and the

functional one increased (blue rectangle), indicating that network

homeostasis only was appreciated when looking to external connectiv-

ity patterns. Regions where both structural and FC decreased with

age (green rectangle) were found in the insula, cingulum anterior (the

anterior part of the default mode network), calcarine, cuneus, occipital

superior, middle and inferior, fusiform, parietal superior, angular, pre-

cuneus, temporal middle and inferior, and the cerebellum.

3.4 | Brain connectome age

To calculate the BCA from MLE (see Section 2) we used the 50 most

correlated (in absolute value) connectivity features for each of the

four cases (FIC, FEC, SIC, SEC) that provided a considerable number

of Q = 200 possible features (Supporting Information Figure S2). As

explained in Section 2, we used 75% of the data set for training

(to calculate the MLE solution) and the remaining 25% for testing

(to calculate the MAE). Starting from the most correlated feature and

adding one by one features optimizing the age estimation (see

Section 2), the linear model provided the optimal age estimation at

K = 38 features (Figure 5a), corresponding to a minimum mean MAE

value (after U = 100 repetition experiments) equal to 5.89 years. A full

FIGURE 3 Structure–function correlo-dendrograms (CDGs) and brain

maps of maximum age correlation across all levels of the multi-scale
brain partition. To build structure–function CDGs, we calculated for
each module appearing in the BHA partition (20 ≤ M ≤ 1,000) the
correlation (and associated p value) between age participant and FEC,
FIC, SEC, and SIC and assessed the structure–function module
connectivity as the geometric mean of the two correlation values, one
achieved by the functional feature and the other by the structural
one. By varying the level M in the multi-scale brain partition, brain
maps were obtained by plotting the maximum value of correlation
across all M levels in the CDG (that we have defined as the multi-scale
maximum age correlation). Brain maps are obtained by separating the
analyses of external (panel a) and internal (panel b) module
connectivity after linear (left column) and quadratic (middle column)
fits. For illustration purposes, we also plot the difference between the
two brain maps, quadratic minus linear (right column). All the nonzero
correlation values plotted here are statistically significant after
Bonferroni correction [Color figure can be viewed at
wileyonlinelibrary.com]
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list of the K = 38 optimal features is provided in Supporting Informa-

tion Table S1. When calculating MLE using these K = 38 best fea-

tures, the graphical representation of ChA as a function of BCA

showed an excellent correspondence (Figure 5b, correlation = .95,

p value < 10−20, results corresponding to one of the U = 100 experi-

ments chosen because its MAE value was the most similar to the aver-

age MAE between all the U = 100 experiments). In terms of age

prediction performance, the quadratic model did not perform better

than the linear case (the minimum MAE was equal to 6.16 years and

was achieved at K = 32 features).

3.5 | Age participation index

The brain maps corresponding to the best K = 38 features are shown

in Figure 5c. Because by model construction each of the 2,514 regions

might participate in four classes of features (FIC, FEC, SIC, SEC), we

calculated for each region its age participation index (API), that is, an

integer number between 0 and 4 indicating with how many of the

four classes a specific brain region contributed to the age estimator

model. Regions with API = 1 were found bilaterally in the frontal

superior, insula, cingulum anterior and middle, hippocampus, parahip-

pocampus, calcarine, cuneus, lingual, occipital superior, middle and

inferior, fusiform, precuneus, thalamus, temporal middle and inferior,

and temporal pole middle. Regions with API = 2 were found bilaterally

in the parahippocampus, fusiform, caudate, putamen, thalamus, tem-

poral pole middle, and temporal inferior. Finally, regions with API = 3,

and therefore, the regions with a major correlate of physiological

aging were found in the connectivity of basal ganglia (BG; caudate,

putamen, pallidum) and thalamus. Although by construction was possi-

ble, no regions existed with API = 4.

3.6 | Structure–function connectomics reveals that
the FST pathway is the major circuit for age estimation

Finally, we looked into what brain areas were connected to those

regions with API = 3. Functionally, we found bilateral connections to

orbitofrontal (superior, middle, and inferior), middle frontal, olfactory,

gyrus rectus, cingulum (anterior, middle, and posterior), calcarine, mid-

dle occipital, fusiform, precuneus, temporal middle, and cerebellum.

Structurally, regions with API = 3 were interconnected between them

and also connected with the insula. Finally, regions with API = 3

(including caudate, putamen, pallidum, and thalamus) had structure–

function interconnections between them and also were connected to

the orbitofrontal and frontal cortices (Figure 5d).

4 | DISCUSSION

The ChA differs from the biological one. While the former is defined

as the time running as birth, the latter quantifies the maturity level

that an individual (or an organ) has at the operational level. In relation

with the brain, the discrepancy between the brain age and ChA might

work as a biomarker for quantifying deterioration as a result of dis-

ease or improvement after some treatment or therapy, which has

unlimited applications. Here, we asked whether the brain age could be

determined exclusively based on structure–function connectivity met-

rics, and therefore, we did not take into consideration typical morpho-

logical characteristics, such as gray and white matter atrophy or

ventricular volume, that have been widely shown to correlate with

ChA. Our results demonstrate that the BCA is an accurate estimation

of ChA, and provides a MAE of 5.89 years in a group of N = 155 par-

ticipants with age ranging from 10 to 80 years. Our results also reveal

FIGURE 4 Functional connectivity modulation by variations in the structural connectivity along lifespan. SC decreases with age, but FC might

either increase (blue rectangle) or decrease (green rectangle), and the latter only occur when looking to external connectivity patterns (left
column). Indeed, when looking to internal connectivity patterns (right column), the situation of SC decreasing and FC increasing did not exist
(transparent brains), and the connectivity patterns only reflect both SC and FC decreasing with age (green rectangle) [Color figure can be viewed
at wileyonlinelibrary.com]
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that the BG/thalamus and their connection with frontal areas is the

key circuit accounting for the age estimation.

4.1 | Differences between brain age and ChA
by assessing brain morphology

Several studies have assessed discrepancies between brain morpho-

logical age and ChA for measuring brain functioning in pathological

groups. In relation with MCI, it was shown that the brain age could

become even 10 years higher than ChA (Franke et al., 2010). In a dif-

ferent study, it was shown that the error in age estimation predicted

the conversion from MCI to Alzheimer’s disease better than any other

variable (Gaser et al., 2013), as compared to imaging morphological

variables (such as the volume of subcortical structures), cognitive

scales or protein biomarkers in CSF. One-year bias was associated to

10% higher risk conversion. In relation to other pathologies, and also

using morphological features to estimate the brain age, the difference

between brain age and ChA explained for instance brain deterioration

from attenuated psychosis to chronic schizophrenia (Koutsouleris

et al., 2014), brain deterioration in patients with human immunodefi-

ciency virus (Cole, Underwood, et al., 2017), accelerated atrophy after

traumatic brain injury (Cole et al., 2015; suggesting that the chronic

effects after the insult can resemble normal aging), but also brain reju-

venation after meditation (Luders et al., 2016).

Morphological age-related alterations have been reported in all

body organs, such as liver, kidney, heart, lung, skin, but notably, what

makes the brain distinct from other organs is precisely its complex

wiring, where short-range connectivity operates at multiple scales in

combination with long range circuitry, allowing the two main brain

functional principles of segregation and integration (Tononi, Sporns, &

Edelman, 1994) to work in harmony. Therefore, the BCA model pre-

sented here provides a new complementary and fundamental

approach within the above framework, fully focused on the multi-

scale organization of the brain circuitries and networks, enabling to

correlate aging with lower and higher brain functions.

FIGURE 5 Chronological age (ChA) versus brain connectome age (BCA). (a) Correlation between ChA and BCA as a function of the number of

features (K). The minimum MAE corresponds to 5.89 years, achieved when K = 38 different features have been incorporated into the maximum
likelihood estimator. In blue, we color results from real data, and in orange, results after shuffling the age vector a number of U = 100 experiments,
which provides the null-distribution (here represented the mean � SD). (b) For one of the U = 100 experiments (chosen because its corresponding
MAE was the most similar to the average MAE along the U = 100 experiments), we plot ChA (in years) as a function of the BCA (here, equal to the
MLE solution with the best K = 38 best connectivity features), which provides a correlation value of 0.95 (p < 2E-20). (c) Brain maps of the K = 38
best features. Color bar indicates age participation index (API), accounting for how many times one brain region is significantly correlated with age in
relation to any of the four following categories: SEC, SIC, FEC, and FIC. Basal ganglia and thalamus are the brain structures whose connectivity
participates most prominently in aging. (d) Basal ganglia and thalamus connect according to a structure–function manner to the inferior and middle
frontal gyri together with the orbitofrontal cortex, that is, the so-called fronto-striatothalamic (FST). Therefore, the FST is the major circuit
participating in brain aging. Node size is proportional to the volume size of the region that participates in this network, whereas link thickness is
proportional to structure–function correlation values [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Differences between brain age and ChA by
assessing brain connectivity: Importance of combining
SC and FC in a multi-scale approach

Only very few studies have made use of connectivity metrics for age

estimation, but none so far have combined in a multi-scale manner SC

and FC metrics to perform the estimation. By combining morphologi-

cal features together with FC ones, the error in the age estimation

was shown to be 4.29 years (Liem et al., 2017). In relation to connec-

tivity metrics, a seminal study showed that resting FC features esti-

mated brain age (Dosenbach et al., 2010), but rather than addressing

physiological aging, the authors focused on neural development in the

age range between 7 and 30 years. Using only structural networks,

but not functional data, it was shown that a simple metrics such as

the sum of all connectivity links (i.e., streamline number) weighted by

the age-link correlation, estimated ChA with high precision (Han et al.,

2014) in healthy participants aged 4–85 years.

Here, by combining both SC and FC features in a multi-scale man-

ner, we have achieved a high performance, quantified by an accuracy

of 5.89 years. To the best of our knowledge, such an approach has

never been reported before in the context of age estimation. When

repeating the entire procedure using only SC features, the perfor-

mance was worse (accuracy of 8.1 years). Analogously, when using

only FC features, the performance was also worse (accuracy of

8.45 years).

Our results not only reveal the relation between BCA and the

aging process, but also highlight how the wiring and the dynamics of

brain networks cannot be disentangled without losing the emergent

synergetic picture for their operational complexity. Indeed, when

looking solely at function, as it occurs in task-fMRI, a distinct scenario

emerges, the so-called frontal super-activation, where younger people

exhibit no or lateralized frontal activation when performing the task,

while older people incorporate unilateral or bilateral frontal cortex

activation (Cabeza, 2002). Our BCA model, although obtained when

the brain is at rest, extends task-related studies, revealing that the

fronto-subcortical (striatum and thalamus) complex is the primary cir-

cuit critically accounting for the functional age-deterioration. Indeed,

the key element is that the multi-scale BCA approach used in this

work perfectly preserves the intrinsic link between structure and

function. In fact, the resting activity is shaped by modular organiza-

tion, where the structural and functional architecture clearly corre-

spond each other (Diez, Bonifazi, et al., 2015).

4.3 | Structure–function connectivity between
subcortical areas (striatum and thalamus) and frontal
cortex is the principal circuit for brain aging

Our structure–function multi-scale analysis has shown that the FST

pathway is the major circuit for age estimation. Several studies have

shown that the connectivity profile of the BG and thalamus is affected

by aging and correlates with age-related neuropsychological decay.

For example, a reduction in thalamic volume along the lifespan has

been associated with age-related sensorimotor performance deterio-

ration (Serbruyns et al., 2015). In relation to BG, and far beyond its

classical association to motor function (Kandel, Schwartz, Jessell,

Siegelbaum, & Hudspeth, 2012), there is nowadays mounting evi-

dence to associate the BG decline with executive function deficits

along the lifespan, such as motor switching (Coxon et al., 2010), inhibi-

tory (Coxon et al., 2016; Leunissen, Coxon, & Swinnen, 2016), and

cognitive control (Grady, 2012), but also learning (Chalavi et al., 2018),

whereby older adults perform worse than young. The status of con-

nectivity between the thalamus and BG, by means of the FST circuit,

has been associated with task-switching performance (Coxon, Van

Impe, Wenderoth, & Swinnen, 2012; Leunissen et al., 2013, 2014a,

2014b), reflecting the capacity for suppression of certain actions to

flexibly adopt new different ones. However, what makes our approach

particularly novel (and without any a priori assumption about the par-

ticipation of these regions) is that it provides quantitative evidence

that the FST circuit makes the major contribution for age estimation.

Different studies have argued that aging and age-associated cog-

nitive impairment is dominantly mediated by the hippocampus (HIP)

and this is supported by the overwhelming amount of work done on

this brain area in human and animal systems during the past decades,

see for instance (Bartsch & Wulff, 2015; Driscoll et al., 2003). There-

fore, these studies support the general idea that healthy aging in

somehow related (likely in a less aggressive manner) to neurodegener-

ative aging, where the disruption of the HIP circuit has been clearly

established (Andersen, 2007). Although our analysis has shown that

HIP has an API of 1 (and therefore finds some role in aging), however,

we have demonstrated that the medial subcortical–cortical FST path-

way is the major circuit-mediating aging (with an API three times

higher than the one for HIP).

Aging appears to affect the FST circuit more profoundly than the

HIP. This emerges from the list of K = 38 optimal connectivity fea-

tures for the BCA (Supporting Information Table S1). In total, there

are 10 features belonging to the FST circuit and 4 features belonging

to the HIP circuit. Within the 10-FST and the 4-HIP features, the max-

imum correlation with age is −0.72 for FST and − 0.46 for HIP

(Supporting Information Figure S4). Therefore, both circuits partici-

pate in aging, but FST dominates in the participation.

We infer from these results that future research on brain aging

should make an increasing effort to study the FST circuit in much more

detail, thereby differentiating different classes of aging: healthy (FST-

mediated) versus Alzheimer’s-dementia (hippocampus-mediated).

4.4 | Network homeostasis: Increased FC in
combination with decreased SC

Increased FC in the pathological brain has been observed before in

different studies on traumatic brain injury (Diez et al., 2017) or Alzhei-

mer’s Disease (Diez, Erramuzpe, et al., 2015). It is however not possi-

ble to establish a direct association between increased FC and

behavioral or cognitive improvements. Indeed, studies have shown

that increased FC can be associated with behavioral improvement

(Grady, 2012; Hernandez-Castillo et al., 2017) but also with behavioral

impairment (Diez, Erramuzpe, et al., 2015; Diez et al., 2017). Accord-

ingly, in the circuits where functional homeostasis exists

(i.e., increased FC together with decreased SC), the circuit’s function-

ality might improve or deteriorate. Future research should look into

this problem in further detail.
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4.5 | A general and novel methodology to quantify
the multi-scale structure–function brain connectivity
impact of therapies, diseases, and lifestyles

The originality of our approach is based on identifying in multi-scale

manner brain modules whose connectivity correlate structurally and

functionally with age. Next, the significant features are pooled to cre-

ate an optimized linear regression model capable to assess the biologi-

cal brain age of a given connectome with minimal error. Such a

methodology opens two important and different perspectives. First, it

provides a quantitative approach to assess the impact of therapies on

biological brain aging (ideally rejuvenating the brain connectome), dis-

eases (accelerating the connectome aging), and other factors shaping

lifestyle. Second, the same methodology can be used to correlate any

graded variable to the brain connectome, and not only age as

approached here, thus allowing for brain connectome estimators of

any other biomarker. In this framework, a biomarker might be any

functional, structural, or behavioral score obtained from participants

for instance, protein levels from CSF or blood, or a clinical scale mea-

suring disease severity.

4.6 | Methodological considerations

• The possibility of stratifying the problem of age estimation along

different intervals of age. We have built a MLE and estimated age

from the entire data set, but separating the data in small sets

improved our results. When repeating the same procedure only

to a young group (N1 = 50, 10.88 < age < 25), and after optimiz-

ing the BCA estimation, we achieved MAE = 1.21 using K = 28

connectivity features. Similarly, for a group of adults (N2 = 49,

25 < age < 60) and old participants (N3 = 56, 60 < age < 80.67)

we achieved, respectively, MAE equal to 2.49 (K = 30) and 1.57

(K = 34), and therefore by stratifying the data set along different

groups of age, the BCA estimated age more accurately. Notice

that, although unstable BCA estimations could occur for small

populations, this does not appear to apply to our study, as the

ratios of MAE divided by the age range (maximum age minus

minimum age) for the three main groups (N1 = 50 young popula-

tion, age range 15 years; N2 = 49 medium age population, age

range 35 years; N3 = 56 old population, age range 20 years)

provide similar values (respectively, Z1 = 1.21/15 = 0.08,

Z2 = 2.49/35 = 0.07, and Z3 = 1.57/20 = 0.08) to the entire

population (Z = 5.89/70 = 0.08, N = 155 subjects).

• Comparison in performance to different models for age estimation. It

is important to remark that the value of MAE of BCA equal to

5.89 years is no better than the performance of some other pre-

diction models using merely volumetric data (Cole, Poudel, et al.,

2017; Franke et al., 2010; Mwangi et al., 2015). However, the

objective of our study is not only to maximize the model perfor-

mance, but to show that we can estimate age as well using exclu-

sively structure–function connectivity features as compared to

morphological features. In other words, we show here that age

affects the brain’s morphology in a similar manner as its connec-

tivity patterns. In addition, our method reveals that the FST circuit

participates to the largest extent in age prediction. From the

engineering point of view of maximizing the model performance,

one should combine cognitive features (e.g., scores in neuropsy-

chological tests or tasks) with MRI features (such as volumetric

and connectivity features) to unveil the redundancy or synergy of

information between connectivity, morphology, and neuropsy-

chological features. Future studies are needed to address these

questions.

• Differences between quadratic and linear features for age estimation.

We have shown a slightly better performance using linear

features in comparison to quadratic ones (MAE = 5.89

vs. MAE = 6.16). It has been shown that cognitive performance

across different tasks often shows an inverted-U shape pattern,

that is, performance levels are low when young, improve during

adulthood, and decrease again when getting older. Accordingly,

to search for best features of such behavior, quadratic terms are

likely to be more relevant. We hypothesize that, as the

“response” (i.e., age) being predicted is linear, and not quadratic,

linear features seem to work better. But, to really demonstrate

that this is the case, more elaborate methods have to be

developed.

• The possibility of extending the method to edge (rather than node)

metrics for age estimation. Lastly, our method makes use of net-

work node metrics to estimate brain age, but this method can also

be extended to the link level, thus identifying specific pathways

rather than brain regions, provided a large cohort is available to

control for multiple comparisons (as a given connectome has

N nodes and N2 links).

• Using SC matrices based on probabilistic tractography does not

affect the result on the FST circuit. We have calculated SC matrices

based on deterministic tractography, which assumes that only one

tract orientation per voxel can exist. A different class of methods

to calculate SC is probabilistic tractography, where using different

seeds to track the fibers, the method estimates a probability value

of water diffusion per voxel. With regard to external connectivity,

probabilistic tractography matrices revealed maximum age corre-

lation bilaterally at anterior and middle cingulum, parahippocam-

pus, fusiform, caudate, putamen, pallidum, thalamus and temporal

pole (Supporting Information Figure S3a). In comparison to deter-

ministic tractography (Figure 3a, linear case), we observe overlap

and similarity across several brain regions (such as the striatum,

thalamus, temporal pole, fusiform, parahippocampus, and middle

cingulum). However, we also find a lower number of areas corre-

lating with age, possibly because deterministic tractography pro-

vides more sparse connectivity matrices with more true positives

fibers. Similarly when looking at internal connectivity (Supporting

Information Figure S3b), probabilistic tractography matrices

revealed maximum age correlation bilaterally at the cingulum

anterior, thalamus, middle temporal, and temporal pole (with sev-

eral areas coinciding between probabilistic and deterministic trac-

tography), and fewer areas in total correlating with age in

comparison to deterministic tractography.

• Poor co-registration for some distorted areas between diffusion and

functional data. The susceptibility-induced distortions are differ-

ent between diffusion MRI and resting state fMRI images, espe-

cially in the brain stem and skull base regions. Therefore, it is still
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difficult and challenging to ensure that the partitioned regions

(especially those near the severely distorted brain regions) are

projected to the same anatomical locations in both diffusion and

fMRI images, and no automatic pipelines currently exist to

perform this task. In this work, similar to most of previous stud-

ies, we assume that current methods for co-registration between

fMRI and diffusion data achieved by the T1-mediated subject-

to-template transformation are still valid. Although this is

beyond the scope of the present work, future work combining

FC and SC should pay attention to this technical but important

issue.

5 | SUMMARY

We have shown that the ChA can be estimated with a much higher

accuracy using structural–functional connectomics than separate

structural or FC metrics. The strategy of assessing the mismatch

between chronological and brain age is suggested to be useful for

quantifying the brain’s deterioration or its reorganization after new

treatments, implying a multitude of meaningful applications. Using

a blind approach in which no brain structures were a priori

assumed to be affected by aging, our multi-scale method has

shown that the connectivity of the FST circuit is critically impor-

tant for brain aging, consistent with previous work associating this

circuit to age-related deterioration of cognitive control of a

multitude of actions.
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