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ABSTRACT 
A recent theory contends that behaviors minimizing energetic cost are rewarding (Cheval et al., 2018). 
However, direct experimental evidence supporting this theory is lacking. To fill this knowledge gap, we 
investigated the effect of energy expenditure on reward-related brain activity. Thirty-one participants were 
equipped with an electroencephalography (EEG) cap and performed a monetary incentive delay task. After 
attempting to quickly respond to a target, participants were given feedback instructing them to retrieve a 
token (reward condition) or to wait (no reward condition). In half of the rewarding trials, participants stood 
up to retrieve a token, thereby increasing energy expenditure. In the other half, participants just had to 
extend their arm to retrieve a token, thereby minimizing energy expenditure. The contingent negative 
variation (CNV) event-related potential (ERP) component preceding the motor response was used as an 
indicator of reward pursuit. The reward positivity (RewP) ERP component time-locked to feedback onset 
was used to determine reward valuation. Results showed that response time, CNV, and RewP were not 
influenced by energy expenditure (remaining seated vs. standing up). This null effect of conditions was 
confirmed using equivalence tests. These results do not support the theory of energetic cost minimization 
but the equivalent effect of sitting and standing on reward-related brain activity is new knowledge that 
could contribute to shed light on the neural processes underlying the pandemic of physical inactivity. 
Keywords: Physical activity; Exercise; Sedentary Behaviors; Reward; EEG. 
 
1. INTRODUCTION 
The adverse effects of physical inactivity on health and its economic burden have now been widely 
demonstrated (Chenoweth & Leutzinger, 2003; Lee et al., 2012). However, despite the intensification of 
actions promoting physical activity worldwide, the number of inactive adults keeps increasing (Kohl et al., 
2012). This inefficiency of public policies reflects an inability to fully understand the processes underlying 
this pandemic. Recently, we developed the theory of energetic cost minimization (TECM; Cheval, Radel 
et al., 2018), which contends that the prevalence of physical inactivity could be explained by the potential 
rewarding value of behaviors that minimize energetic cost, such as sitting instead of standing. TECM 
suggests that energetic minimization has acquired a rewarding value across evolution because efficient 
actions provided an advantage for survival (Lee, Emerson, & Williams, 2016; Lieberman, 2015). Yet, while 
indirect evidence of this rewarding value has been provided (Cheval, Tipura et al., 2018), direct 
experimental evidence is lacking. 
 
The indirect evidence stems from recent findings suggesting that additional brain resources are required to 
resist an automatic attraction to sedentary behaviors (Cheval, Tipura et al., 2018). In this study, participants’ 
electroencephalographic (EEG) activity was examined while they performed a computerized approach-
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avoidance task using physical-activity (images of stick figures engaging in physical activity) and sedentary 
stimuli (images of stick figures engaging in sedentary behaviors) (Cheval, Sarrazin, Isoard-Gautheur, 
Radel, & Friese, 2015; Cheval, Sarrazin, & Pelletier, 2014; Krieglmeyer & Deutsch, 2010). On each trial, 
a manikin was presented above or below a stimulus, and participants were instructed to make a keyboard 
response to quickly move the manikin away from or toward the stimulus. In one condition, participants 
moved the manikin toward physical activity stimuli and away from sedentary stimuli. In the other condition, 
participants did the opposite. This EEG study assessed, for the first time, the brain processes underlying the 
automatic approach and avoidance reactions to these two types of stimuli. Event-related potentials (ERPs) 
time-locked to stimuli were extracted for analysis and showed larger N2 amplitude when participants 
moved away from sedentary versus physical activity stimuli. As N2 is linked to inhibitory control, this 
result suggested that higher inhibitory activity was required to avoid sedentary stimuli. Avoiding a 
rewarding stimulus such as high-calorie food has been shown to increase the inhibition-related N2 
amplitude (Carbine et al., 2017). Therefore, the results of Cheval et al. (2018) suggested that sedentary 
stimuli, representing the lowest level of energy expenditure, could be rewarding. Yet, brain processes 
observed in participants using a keyboard in a sitting position may lack ecological validity and may not 
apply to daily activities involving actual variations of energy expenditure. To test whether energetic cost 
modifies reward-related brain activity, as suggested by TECM, this activity should be measured in tasks 
involving lower versus higher energy expenditure. In the current study, EEG activity was recorded when 
participants remained seated or stood up in a task involving monetary incentives that triggered activity in 
the reward system. Based on the TECM (Cheval et al. 2018), we hypothesized that rewards that could be 
retrieved with lower energetic expenditure (i.e., remain seated vs. standing up) are associated with quicker 
response times (H1), greater brain activity related to reward pursuit (H2), and greater brain activity related 
to reward valuation (H3).  
 
2. METHODS 
2.1. Participants 
Sample size was determined with an a priori power calculation conducted with G*Power 3.1.9.2 (Faul, 
Erdfelder, Lang, & Buchner, 2007). The experiment was powered to detect medium size effects (dz = 0.5) 
in one-tailed paired-sample t-tests, with α = 0.05 and β = 0.8. The calculation yielded N = 27, but we aimed 
for N = 31 to account for lost data (e.g., due to poor EEG recording). Thirty-one young healthy right-handed 
participants completed the experiment. One participant’s data were removed because of an experimenter 
error during data collection, and one participant’s data were removed because the task was not performed 
as instructed, leaving a final N = 29 (Age: 22±2 years; body mass index: 24±4 kg/m2; 16 females). Of this 
final sample, two participants’ EEG data were unusable due to excessive artifact and three participants’ 
EEG data were missing for one block of the experiment due to experimenter error. 
 
2.2. Procedures 
2.2.1. Monetary Incentive Delay Task 
Participants performed a monetary incentive delay task (Meadows, Gable, Lohse, & Miller, 2016a), which 
is known to activate the reward system (Knutson, Westdrop, Kaiser, & Hommer, 2000). Participants were 
seated in a 90-cm wide x 73-cm deep x 93-cm high foldup butterfly chair (Mainstays soft faux-leather 
butterfly chair; Figure 1). Adjacent to the right side of the chair and 60 cm above the floor was a tabletop 
(45-cm wide x 60-cm long) on which rested a computer mouse. Adjacent to the left side of the chair and 63 
cm above the floor was a tabletop (45-cm wide x 61-cm long) on which rested one red and one blue plastic 
container. Participants were instructed to sit back in the chair such that their back, neck, and head was 
supported by the chair. They were told to rest their right arm on the table to their right and their left arm on 
the table to their left, to start each trial in this position and maintain it throughout the experiment unless the 
task required them to move (i.e., to stand up). A 72-cm high table was 36 cm from the front of the chair. A 
computer monitor with a 48-cm screen was 21 cm away from the front of the table and 17 cm above the 
table. To the left of the computer monitor was a 40.5-cm high computer tower, on which rested a blue 
plastic container identical to the one to the left of the chair. Both of these blue containers held plastic coins. 
The containers were positioned such that participants had to extend their elbow approximately 180° and 
flex their shoulder in the sagittal plane to reach into the container. Participants could reach into the (lower) 
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container on the table to their left by extending their elbow and remaining seated. Participants had to stand 
up and extend their elbow to reach into the (upper) container on the computer tower. 

 
Figure 1. Set-up. The participant was seated in a butterfly chair with a table on both sides of the chair. The right 
arm rested on the table and used a computer mouse to respond to stimuli during the monetary incentive delay task. 
The left arm rested on the table that held a blue container filled with plastic coins and a red container to place the 
coins earned during the task. A table was positioned in front of the participant with a computer monitor resting 
upon it (the monitor is depicting a fixation cross). A computer tower was positioned to the left of the monitor (from 
the participant’s perspective) with a blue container filled with plastic coins on it. 

 
After positioning the participant, the experimenter read the following instructions related to the task 
procedures: 
“You will be completing a task to try to earn money by earning plastic coins. Each coin is like a ticket that 
you enter into a raffle for $10. So, the more coins you earn, the more likely you are to win $10. You will 
earn coins largely based on your reaction time in the task, which will consist of four blocks of trials with a 
1-minute break between each block. Each trial will begin by presenting you with an image indicating from 
which container you will retrieve the coin you earn from that trial, if you earn a coin. If the container is on 
the lower line, then you will retrieve that coin from the container on the table next to you. If the container 
is on the upper line, then you will retrieve that coin from the container on top of the computer tower. Next, 
on the screen, you will be presented with a cross on which you should fixate. Sometime after being 
presented with the cross, you will see a target square. Your objective is to press the left mouse button while 
the target is present. This means that you should press the button as quickly as you can after the target 
appears, trying to press the button before the target disappears. If you succeed in pressing the button while 
the target is present, then you are more likely to earn a reward for the trial. Before learning whether you 
earned the reward, you will once again fixate on a cross. Then, you will receive feedback indicating whether 
you earned the reward or not. If you see a checkmark, then you earned the reward. If you see an X, then 
you did not. Although whether you earn the reward is largely based on whether you pressed the button 
while the target is present, it is not the sole criterion. Rather, your success in pressing the button while the 
target is present is entered into an algorithm that determines whether you earn the reward: if you succeed, 
the algorithm is more likely to determine that you earn the reward. However, you may earn a reward for a 
slow response or even if you fail to make a response, and you may fail to earn a reward for a quick response. 
Nonetheless, it is crucial that you try to press the button while the target is present in order to maximize 
your likelihood of earning the reward and, thus, winning the raffle. If you see a checkmark indicating that 
you earned the reward, do not immediately retrieve the coin. Rather, follow the instructions on the screen. 
Specifically, do not move while the word “WAIT” is on the screen. When the word “SET” appears on the 
screen, you should position your hand above the appropriate container. If the appropriate container is the 
one on top of the computer tower, then you should stand up before positioning your hand. When the word 
“GO” appears on the screen, you should pick one coin out of the appropriate container, return to your start 
position, sitting back in the chair, and then place the coin in your red collection container. Next, you will 
be prompted to start the next trial.” 
Participants completed 1 block of 8 practice trials followed by 1 block of 24 trials, then 3 blocks of 28 trials 
each (Figure 2). Unbeknownst to the participants, 50% of trials in each block were pre-determined to result 
in reward feedback) and 50% to result in no reward feedback. Further, in each block, half of the time, 
reward feedback occurred on trials that began with the lower container stimulus (sit trials), and the other 
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half of the time, reward feedback occurred on trials that began with the upper container stimulus (stand 
trials). Thus, each block was equally comprised of sit-reward, sit-no reward, stand-reward, and stand-no 
reward trials, which were randomly ordered within each block. Following the task, participants were 
debriefed about the experiment and were asked three questions. First, they were asked whether they 
suspected their performance on the task did not influence their likelihood of winning the raffle. Second, 
they were asked to indicate how much they believed their responses in the task influenced the feedback 
they received. Third, they were asked whether it felt more rewarding when they earned a coin they stood 
up to retrieve or a coin they remained seated to retrieve. Data related to these questions is provided in 
Appendix A. The monetary incentive delay task was scripted and delivered with Presentation software. The 
script and stimuli can be found at https://doi.org/10.17605/OSF.IO/8MKTH. 
 

 
 

Figure 2. Study design. Four trial types for the monetary incentive delay task and time intervals from which the 
reward-related brain activity and behavior measures were derived. Each trial was preceded by an inter-trial interval 
followed by a prompt for the participant to initiate a response. After the response, an inter-stimulus interval occurred 
and the trial type (sit vs. stand) stimulus was presented. Next, a fixation cross was presented for a random time 
interval and the contingent negative variation (CNV) ERP component was extracted from the EEG. After the offset 
of the cross, the target appeared, and the participant’s response time was recorded. After the target disappeared, a 
fixation cross appeared followed by a feedback display indicating whether the participant earned a reward ( ) or 
failed to earn a reward (X). The reward positivity (RewP) ERP component was derived from the EEG while the 
feedback was displayed. On reward feedback trials, participants were presented with a prompt to wait, followed by 
a prompt to set their hand over the appropriate blue container with the coins, standing up to do so for the stand 
trials. Then, the set prompt was replaced by a go prompt, which instructed the participant to take a coin from the 
container and place it in the red collection container while returning to their starting position in the chair. 

 
2.2.2. EEG Recording and Initial Processing 
Scalp EEG was collected from 22 channels of an EEG cap housing a 64 channel BrainVision actiCAP 
system (Brain Products GmbH, Munich, Germany) labeled in accord with an extended international 10-20 
system (Oostenveld & Praamstra, 2001) and sampled at 250 Hz. EEG data were online-referenced to the 
left earlobe and a common ground was employed at the FPz electrode site. Electrode impedances were 
maintained below 25 kΩ throughout the study and a high-pass filter was set at 0.016 Hz. The EEG signal 
was amplified and digitized with a BrainAmp DC amplifier (Brain Products GmbH) linked to BrainVision 
Recorder software (Brain Products GmbH). EEG data processing was conducted with BrainVision 
Analyzer 2.1 software. Data were re-referenced to an averaged ears montage, band-passed filtered between 
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0.1 and 30 Hz with 4th order rolloffs with a 60 Hz notch employing a zero-phase shift Butterworth filter. 
Next, a researcher with expertise in EEG processing visually inspected the data and marked obvious non-
ocular artifacts. Then, ocular artifacts were reduced employing the ICA-based ocular artifact rejection 
function within the BrainVision Analyzer software (electrode FP2 served as the VEOG/HEOG channel; 
BrainProducts, 2013). This function searches for an ocular artifact template in channel FP2 and then, finds 
ICA-derived components that account for a user specified (70%) amount of variance in the template-
matched portion of the signal from FP2. These components were removed from the EEG signal, which was 
then reconstructed for further processing. 
 
2.2.3. Demographics 
We collected data about demographic variables that could be related to the reward associated with energetic 
cost minimization, such as body mass index, typical exercise behavior, and recent physical activity (Cheval, 
Radel et al., 2018). After providing informed consent and before performing the monetary incentive delay 
task, participants self-reported their age, sex, height, weight, and handedness (Oldfield, 1971). After 
completing the task, participants filled out three versions of the International Physical Activity 
Questionnaire (IPAQ) (Craig et al., 2003) that asked about physical activity behavior and sedentary 
behavior during (1) a typical week; (2) the last 3 days; and (3) the current day. After completing the IPAQs, 
participants filled out the Situated Decisions to Exercise Questionnaire (SDEQ), which indexes contextual 
decisions about exercise behavior (Brand & Schweizer, 2015). Specifically, the SDEQ describes a situation 
(e.g., “You’re leaving class/work and you are just about to go to the gym. Now you hear that your friends 
plan to go for a drink. They invite you.”) and asks, “Do you exercise or not?” Responses are made on a 5-
point scale, anchored by “By All Means/Definitely Yes”, “By No Means/Definitely No”. The internal 
consistency of the SDEQ was assessed with Chronbach’s α, which yielded a value of 0.641, indicating 
marginal reliability. Demographics data are available in Appendix B. 
 
2.3. Dependent Variables 
2.3.1. Response Time 
Previous studies showed that response times are shorter when a reward versus no reward is at stake in a 
monetary incentive delay task (Novak & Foti, 2015; Novak et al., 2016; Threadgill & Gable, 2016) and that 
the magnitude of the reward is negatively correlated with the response time (i.e., the greater the reward, the 
shorter the response time; Meadows, Gable, Lohse, & Miller, 2016b). In the present experiment, 
participants’ response times were computed as the difference in time between target appearance and 
participants’ first response. If the participants made no response prior to feedback or if the participants 
anticipated and responded before the target appeared, the trial was excluded from subsequent analysis. This 
procedure resulted in the rejection of 11.0±11.8 (mean±SD) trials per participant. The remaining trials were 
natural log transformed and averaged. 
 
2.3.2. Contingent Negative Variation ERP Component (CNV) 
The CNV was extracted from the EEG signal collected during response preparation. The CNV is a negative 
deflection in the EEG between a warning stimulus and a target stimulus, reflecting response preparation 
(Brunia, van Boxtel, & Böcker, 2012). The component is maximal at the midline electrode sites and those 
sites contralateral to the responding limb. The component is believed to be generated by brain areas required 
for response execution. The CNV is enhanced when individuals are preparing to make a response that may 
result in a reward. For example, previous studies (Novak and Foti, 2015; Novak et al. 2016) showed that 
the CNV was larger for trials with versus without monetary reward at stake. Here, the CNV was extracted 
from an epoch beginning 200 ms prior to the onset of the trial-type stimulus (image depicting a container 
on an upper or lower line; stand or sit trial, respectively) and ending 4500 ms after this stimulus. Then, the 
epoch was baseline-corrected with respect to the pre-stimulus interval (-200 – 0 ms). Next, epochs 
containing a change of more than 50 µV from one data point to the next, a change of 100 µV within a 
moving 200-ms window, or a change of less than 0.5 µV within a moving 200-ms window in any of the 
electrodes of interest (FC1, FCz, C1, Cz) were excluded from subsequent analysis. Further, any epochs 
containing EEG that was marked as containing an obvious artifact during visual inspection and any epochs 
in which participants responded before 4000 ms were removed. This resulted in the rejection of 11.3±11.0 



https://doi.org/10.31236/osf.io/kbnxg 

epochs per participant. The remaining epochs were averaged within trial type (sit vs. stand). The CNV was 
quantified by taking the mean amplitude during the final 200 ms before the target could appear (3800 – 
4000 ms after trial type stimulus onset) at FC1, FCz, C1, and Cz, then averaging across these electrodes 
(Novak & Foti, 2015; Novak et al., 2016). 1,2 
 
2.3.3. Reward Positivity ERP Component (RewP) 
The RewP was extracted from the EEG signal collected during exposure to feedback. The RewP is a positive 
deflection in the EEG 250 – 350 ms following feedback presentation. The RewP is maximal at the midline 
frontocentral electrode sites (Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin, 2015). The RewP is 
believed to be generated by the anterior cingulate cortex, to reflect reward valuation, and to be specifically 
related to positive reward-prediction errors (i.e., how much more rewarding feedback was than predicted). 
The RewP is most commonly extracted from a difference wave derived by subtracting the average of no 
reward feedback trials from the average of reward feedback trials. Of interest in our study, RewP amplitude 
scales with the magnitude of the reward associated with the feedback (Meadows et al., 2016a; Novak & 
Foti, 2015; Novak et al., 2016; Sambrook & Goslin, 2015; Threadgill & Gable, 2016). For example, 
Sambrook and Goslin (2015) conducted a meta-analysis and observed that the RewP derived from reward 
feedback minus no reward feedback difference waves was larger when the reward associated with the 
feedback was greater. In a single-trial analysis, Meadows et al. (2016a) examined the RewP from each 
reward feedback trial wherein each trial was associated with a reward ranging in magnitude from $0.00 
USD to $4.96 USD. Results showed that RewP amplitude was correlated with reward magnitude. In the 
present experiment, the RewP was extracted from an epoch beginning 200 ms prior to the onset of the 
feedback stimulus and ending 1000 ms after this stimulus. Then, the epoch was baseline corrected with 
respect to the pre-stimulus interval (-200 – 0 ms). Next, epochs containing a change of more than 50 µV 
from one data point to the next, a change of 100 µV within a moving 200-ms window, or a change of less 
than 0.5 µV within a moving 200-ms window in any of the electrodes of interest (Fz, FCz, Cz) were 
excluded from subsequent analysis. Further, any epochs containing EEG that was marked as containing an 
obvious artifact during visual inspection were excluded from subsequent analysis. This resulted in the 
rejection of 2.85±4.56 epochs per participant. Next, epochs time-locked to reward feedback were averaged 
separately for sit and stand trials, and the same was done for epochs time-locked to no reward feedback. 
Then, the average of the no reward feedback epochs was subtracted from the average of the reward feedback 
epochs separately for sit and stand trials to create a difference wave for sit trials and a difference wave for 
stand trials. To determine the time window for RewP quantification, the sit and stand difference waves were 
averaged together for each participant. Since difference waves exhibited substantial interindividual 
variability in RewP peak latency, we adapted each participant’s RewP time window to their RewP peak 
latency at the electrode (Fz, FCz, or Cz) at which it peaked (Clayson, Baldwin, & Larson, 2013)3. 
Specifically, we centered a 40-ms time window on each participants’ positive peak amplitude at Fz, FCz, 
or Cz within 250 – 350 ms. We then computed mean amplitude in this time window for Fz, FCz, and Cz 
and then averaged across these electrodes. We did this separately for the sit and stand difference waves. 
 
2.4. Statistical Analysis  
The confirmatory analyses were conducted with one-tailed paired sample t-tests (trial type: sit vs. stand) 
for the three dependent variables. Non-significant results in a null-hypothesis significance test do not 
provide evidence for the absence of an effect (Harm and Lakens, 2018). Therefore, to draw informative 
conclusions in case of the null effect of condition (sit vs. stand), we planned to apply a two one-sided tests 
(TOST) procedure to test equivalence for a dependent t-test (Cohen’s dz) using the TOSTER package, 
version 0.3.4 of the R software (Lakens, 2017). 
                                                             
1 In the pre-registration document, the epoch is incorrectly noted as ending 3500 ms after the stimulus onset, and CNV quantification is incorrectly 
noted to be mean amplitude between 2800 – 3000 ms after stimulus onset. However, the last 200 ms before the target could appear begin 3800 ms 
after the stimulus onset, which was the intended epoch of interest (Novak & Foti, 2015; Novak et al., 2016). 
2 For both CNV and RewP, if one of the electrodes to be used for averaging had malfunctioned during recording, this electrode was excluded from 
the average. This was the case for only one participant. 
3 We also confirmed that this peak corresponded to a negative deflection in the no reward feedback waveforms (Krigolson, 2018), which was the 
case for all but four participants. For these participants, the positive peak between 250 and 350 ms of the difference waveform that corresponded 
with a negative deflection in the no reward feedback waveforms was used to determine the RewP time window. 
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3. RESULTS 
3.1. Response Time 
Results of the equivalence test were in line with a non-significant effect of condition (sit vs. stand). 
Specifically, we tested the equivalence of log-transformed response time of the sit (7.76±0.174) and stand 
condition (7.79±0.126), with correlation between observations of 0.821, using equivalence bounds of -
0.095 and +0.095 (on a raw scale) (Novak et al., 2016), with an alpha of 0.05. The equivalence test was 
significant (t(28) = 3.50, p < 0.001) and the null hypothesis test was non-significant (t(28) = -1.60, p = 0.060 ; 
one-tailed). These results evidence an absence of effect of condition (sit vs. stand) on response time.  
 
3.2. CNV 
The grand average waveform and topoplot for the CNV are depicted in Figure 3, Panels A and B, 
respectively. Results of the equivalence test were in line with a non-significant effect of condition (sit vs. 
stand). Specifically, we tested the equivalence of CNV of the sit (-6.08±5.75) and stand condition 
(6.20±5.35), with correlation between observations of 0.931, using equivalence bounds of -1.234 and 
+1.234 (on a raw scale) (Novak et al., 2016), with an alpha of 0.05. The equivalence test was significant, 
t(26) = -2.74, p = 0.005 and the null hypothesis test was non-significant, t(26) = 0.297, p = 0.616 (one-tailed)4. 
The result is visualized in Figure 3, Panel C, where the 90% confidence interval is plotted and compared to 
the equivalence bounds. As the 90% confidence interval did not include the equivalence bounds, we can 
declare equivalence. In other words, based on the combined results of these two tests we can conclude that 
there was evidence for the absence of an effect of our conditions (sit vs. stand) on CNV. 
 

 
Figure 3. Contingent Negative Variation. A: Grand average waveforms for the ERP time-locked to the onset of 
the trial type (sit or stand condition) stimulus at the Fz, Cz, and Pz electrodes. The highlighted area represents the 
final 200 ms before earliest target onset, and contingent negative variation ERP component (CNV) mean amplitude 
is computed for this epoch. B: Topography of the CNV averaged across condition. C: Equivalence test for CNV 
showing the 90% confidence interval in relation to the equivalence bounds of -1.234 and +1.234. 

 
3.3. RewP 
The grand average waveform and topoplot for the RewP is depicted in Figure 4, Panels A and B. Results 
of the equivalence test were in line with a non-significant effect of condition (sit vs. stand). Specifically, 
we tested the equivalence of RewP of the sit (6.18±3.73) and stand condition (7.30±5.71), with correlation 
between observations of 0.645, using equivalence bounds of -3.926 and 3.926 (on a raw scale) (Meadows 
et al., 2016a), with an alpha of 0.05. The equivalence test was significant, t(26) = 3.38, p = 0.001 and the null 
hypothesis test was non-significant, t(26) = -1.33, p = 0.903 (one-tailed)5. The result is visualized in Figure 
4C, where the 90% confidence interval is plotted and compared to the equivalence bounds. As the 90% 
                                                             
4 Since the result of the one-tailed null hypothesis test is in the opposite direction of what was tested, the p-value is subtracted from one. 
5 Since the result of the one-tailed null hypothesis test is in the opposite direction of what was tested, the p-value is subtracted from one. 
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confidence interval did not include the equivalence bounds, we can declare equivalence. In other words, 
based on the combined results of these two tests we can conclude that there was evidence for the absence 
of an effect of our conditions (sit vs. stand) on RewP. 

 
Figure 4. Reward Positivity. A: Grand average waveforms for the ERP time-locked to the onset of reward/no 
reward feedback at the Fz, Cz, and Pz electrodes. The solid lines represent the reward – no reward difference waves 
for each condition. The highlighted area represents the epoch in the difference wave used to compute mean 
amplitude in adaptive 40 ms time windows. B: Topography of the difference wave reward positivity ERP 
component (RewP) averaged across condition. C: Equivalence test for RewP showing the 90% confidence interval 
in relation to the equivalence bounds of -3.926 and +3.926. 

 
4. DISCUSSION 
This study was designed to investigate whether energetic cost modifies reward-related brain activity. The 
EEG activity of 27 participants was analyzed when they remained seated or stood up in response to 
monetary incentives. Based on the TECM (Cheval et al. 2018), we hypothesized that rewards that could be 
retrieved with lower energetic expenditure (i.e., remain seated vs. standing up) are associated with quicker 
response times (H1), greater brain activity linked to reward pursuit (H2), and greater brain activity linked 
to reward valuation (H3). 
 
Results did not support the hypotheses derived from the TECM (Cheval et al., 2018). Response times were 
similar across conditions. CNV amplitude was not significantly larger for rewards that could be retrieved 
with minimal energetic expenditure (remain seated vs. stand up). These results did not support the 
hypothesis that actions involving lower energy expenditure were associated with greater reward pursuit 
than actions involving higher energy expenditure (H1 and H2). RewP amplitude was not larger for actions 
involving lower energy expenditure either, thereby suggesting that these actions were not valued more than 
actions involving higher energy expenditure (H3). Moreover, equivalence tests confirmed the absence of 
effects of energy expenditure (sit vs. stand) on the three outcomes. 
 
These results are inconsistent with previous functional magnetic resonance imaging (fMRI) research 
showing decreased activation of brain regions involved in reward processing, such as anterior cingulate 
cortex, when participants were informed that they would have to exert higher levels of physical effort to 
subsequently receive a reward (Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009; Prévost, 
Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010). Results are also inconsistent with fMRI research 
demonstrating that participants use prediction errors to make decisions to minimize energy expenditure by 
employing a brain network that includes anterior cingulate cortex (Skvortsova, Palminteri, & Pessiglione, 
2014). In the present experiment, the RewP reflected a reward-prediction error generated by anterior 
cingulate cortex, but the RewP was not enhanced for trials associated with low energy expenditure (sit 
trials). However, there are some notable differences between past research and the present experiment, 
besides the different method used to record brain activity. For example, present research had participants 
increase energy expenditure by standing up, whereas past research had participants increase energetic cost 
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in less ecologically-valid ways, such as by applying pressure to a force sensor or moving a trackball 
computer mouse. Second, the present experiment differed in that participants’ brain activity associated with 
reward-prediction errors/reward valuation was measured at the time of reward consumption (i.e., receiving 
the feedback indicating that they had earned the reward; Novak et al., 2016), whereas the prior research 
measured reward valuation when participants were given a cue about subsequent energy expenditure. 
Future research could investigate the effects of opportunities to minimize energetic cost on different stages 
of reward processing, likely using EEG, given its exquisite temporal resolution (Novak & Foti, 2015; Novak 
et al., 2016). 
 
Some explanations could account for the null results reported in the present study. First, the energetic cost 
difference between standing and remaining seated may be insufficient and could be associated with small 
effect sizes. Future studies should use paradigms with larger energetic expenditure differences. Second, 
participants may not have been sufficiently sensitive to the reduction of energetic cost. The TECM posits 
that energetic minimization is more rewarding for individuals who have recently expended energy and who 
are not physically fit. Here, participants generally came into the experiment having expended little energy 
on their testing day (relative to their typical weekly energy expenditure), but also reporting typical physical 
activity behavior and body mass indices associated with high levels of physical fitness (see Appendix B). 
Future studies should include an acute exercise before the rewarding task and select a sample of physically 
inactive participants. Third, the automatic neuro-behavioral adaptation favoring the optimization of 
energetic cost may not be mediated by the reward network, and may rely on other processes such as purely 
biomechanical adaptation mechanisms.  
 
Among the strengths of the present study are the investigation of the effects of engaging in ecologically-
valid behaviors involving lower versus higher energy expenditure on reward-related brain activity, the 
implementation of a paradigm known to elicit this brain activity (Knutson et al., 2000; Meadows et al., 
2016a; Meadows et al., 2016b; Novak & Foti, 2015; Novak et al., 2016; Threadgill & Gable, 2016), and 
the assessment of the activity using a select couple of large ERP components, including one that was 
isolated with a difference wave (RewP; Luck, 2014). However, three potential limitations should be noted. 
First, as mentioned above, we used a homogenous sample of participants who may not have found energetic 
cost minimization particularly rewarding. Second, our paradigm elicited anticipatory responses (before the 
target appeared), which caused us to discard response time and CNV data from some trials. Future studies 
should consider monetary incentive delay paradigms that are less likely to elicit such responses (e.g., 
paradigms with more variability between the target cue and the target as well as paradigms without a 
specific response window; e.g., Meadows et al., 2016b). Finally, our paradigm may not have been ideal for 
investigating the effects of trial type (sit vs. stand) on the RewP. Specifically, since participants were 
deceived into thinking that their response times influenced whether they received reward feedback, and 
they tended to have quicker response times for sit trials, participants likely anticipated getting reward 
feedback for sit trials more than they anticipated getting reward feedback for stand trials. As such, 
participants would have smaller reward-prediction errors (and, thus, smaller RewPs) when receiving reward 
feedback for sit trials, thereby masking the influence of low energy expenditure on the value of such 
rewards.  
 
5. CONCLUSION 
The present study directly tested, for the first time, whether opportunities to sit or stand trigger different 
reward-related brain activity, as contended by the theory of energetic cost minimization (Cheval, Radel et 
al., 2018). Results did not support this hypothesis as they showed that reward-related brain activity was 
equivalent at lower (remaining seated) and higher (standing up) level of energy expenditure. Yet, this null 
result is informative and future studies addressing some limitations of the current one, while leveraging its 
strengths, could contribute to shed light on the neural processes underlying the pandemic of physical 
inactivity. 
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APPENDIX A 
 
Debriefing Questions and Responses 
 
- Indicate how much you believed your responses influenced whether you earned a reward. One-hundred 
point visual analog scale is anchored by “0, not at all" and “100, completely”. 
M = 51.4 (SD = 25.3) 
 
- Did you believe the number of coins you earned would influence your chances in the raffle? 
Yes = 27 
No = 1 
 
- Which type of trial felt more rewarding to win? 
Sit = 12 
Stand = 5 
No Difference = 8 
 
 
APPENDIX B 
 
Demographic Data 

 
Variable M (SD) 
METsa/Week 6110 (4728) 
METs/Last 3 Days 1987 (1718) 
METs/Present Day 187 (282) 
Sitting/Week (min) 351 (217) 
Sitting/Last 3 Days (min) 402 (268) 
Sitting/Present Day (min) 140 (137) 
SDEQb 2.33 (.547) 

 
aMETs refer to metabolic equivalents and express the energy cost of physical activities as a multiple of the 
resting metabolic rate. Here, METs refer to values obtained from the International Physical Activity 
Questionnaires (Craig et al., 2003) 
bSituated Decision to Exercise Questionnaire 


