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Abstract

The ability to learn new motor skills is crucial for activities of daily living, especially in older adults. Previous work in younger
adults has indicated fast and slow stages for motor learning that were associated with changes in functional interactions within
and between brain hemispheres. However, the impact of the structural scaffolds of these functional interactions on different
stages of motor learning remains elusive. Using diffusion-weighted imaging and probabilistic constrained spherical deconvolution-
based tractography, we reconstructed transcallosal white matter pathways between the left and right primary motor cortices (M1–
M1), left dorsal premotor cortex and right primary motor cortex (LPMd–RM1) and right dorsal premotor cortex and left primary
motor cortex (RPMd–LM1) in younger and older adults trained in a set of bimanual coordination tasks. We used fractional aniso-
tropy (FA) to assess microstructural organisation of the reconstructed white matter pathways. Older adults showed lower beha-
vioural performance than younger adults and improved their performance more in the fast but less in the slow stage of learning.
Linear mixed models predicted that individuals with higher FA of M1–M1 pathways improve more in the fast but less in the slow
stage of bimanual learning. Individuals with higher FA of RPMd–LM1 improve more in the slow but less in the fast stage of biman-
ual learning. These predictions did not differ significantly between younger and older adults suggesting that, in both younger and
older adults, the M1–M1 and RPMd–LM1 pathways are important for the fast and slow stage of bimanual learning, respectively.

Introduction

With dedicated practice, our ability to perform complex motor skills
(e.g. typing on a touch screen mobile) significantly improves. This
ability to learn new motor and other skills is crucial at all ages and
particularly in older adults (OA). It enables OA to counteract the
adverse effects of ageing on sensorimotor control and to maintain
functional independence (Swinnen et al., 1998; Seidler et al., 2010).

Behavioural studies have demonstrated that motor learning gener-
ally follows two distinct stages: (1) the early, fast learning stage in
which improvement in performance is seen within the first training
session and (2) the late, slow learning stage in which smaller gains
are obtained across subsequent training sessions distributed over a
single day, several days or weeks/months (Brashers-Krug et al.,
1996; Karni et al., 1998; Doyon et al., 2003). Depending on the
task requirements, OA are often able to achieve considerable perfor-
mance gains with training, similar to younger adults (YA)
(Voelcker-Rehage & Willimczik, 2006; King et al., 2013; Maes
et al., 2017). However, the question that has remained largely unan-
swered is the extent to which age modulates behavioural improve-
ments in the fast and slow stages of motor learning.
In addition to learning-related behavioural aspects, functional

brain studies have shown the involvement of cerebellar, subcortical
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and cortical (including primary motor (M1), premotor (PM), pre-
frontal and parietal) structures in motor learning (Jueptner et al.,
1997; Doyon et al., 2003; Debaere et al., 2004; Floyer-Lea & Mat-
thews, 2005; Puttemans et al., 2005; Remy et al., 2008; Hardwick
et al., 2013; Beets et al., 2015). Aside from cortico-subcortical and
cortico-cerebellar circuits involved in different stages of motor learn-
ing (Doyon et al., 2003; Dayan & Cohen, 2011), transcallosal cor-
tico-cortical functional interactions within the motor network may
also play a relevant role (Kantak et al., 2012). In this regard, previ-
ous work reported modulation of interhemispheric coupling between
bilateral M1s and between dorsal PM and M1 (PMd–M1) during the
fast bimanual learning stage (Andres et al., 1999; Serrien & Brown,
2003; Sun et al., 2007). Whether these results at the level of brain
function extend to brain structure, and particularly white matter
(WM) microstructural organisation, in YA and OA requires further
investigation.
The WM microstructural organisation of the underlying network

pathways is critical for the transfer of neuronal information through
the network (Fields, 2008). This can be inferred in vivo using diffu-
sion-weighted imaging (DWI). Previous DWI studies in YA have
indicated associations between motor learning ability and the WM
microstructural organisation of the corpus callosum (CC: containing
fibres connecting the two hemispheres) (Sisti et al., 2012), superior
cerebellar peduncle (containing fibres connecting the cerebellum
with motor and premotor areas) (Della-Maggiore et al., 2009), PM
cortex and cerebellum (Tomassini et al., 2011). Of note, except for
the study of Sisti et al. (2012), who investigated the slow stage of
bimanual learning, the other two studies focused on the fast stage of
unimanual motor learning. Two unimanual motor learning DWI
studies included both OA and YA groups. Bennett et al. (2011)
showed an association between the microstructural organisation of
the WM pathway connecting caudate nucleus to dorsolateral pre-
frontal cortex and the fast and slow stages of unimanual motor
learning in both OA and YA. More recently, Schulz et al. (2014)
found correlations between the WM microstructural organisation of
several cortico-cortical pathways connecting M1 to premotor areas
(including PMd) and the slow stage of unimanual motor learning
which were present only in OA.
In sum, the extent to which WM microstructural organisation pre-

dicts different stages of bimanual coordination learning, particularly
in OA, is still unclear. Moving both hands in an organised manner
in both space and time is required in many activities of daily living,
which support functional independence. Bimanual movements occur
twice as often as unimanual movements during activities of daily
living (Vega-Gonzalez & Granat, 2005). Furthermore, bimanual (re-)
training is frequently discussed in the context of neurorehabilitation
in stroke patients (Reinkensmeyer et al., 2016; Kantak et al., 2017).
These indications provide a strong impetus for exploring the neural
basis of bimanual motor learning in OA.
Here, we investigated the extent to which (1) ageing impacts the

fast and slow stages of bimanual motor learning, (2) WM
microstructural organisation of transcallosal pathways involving M1
and PMd predicts bimanual motor learning and (3) whether the latter
prediction is affected by age. We hypothesised that bimanual coordi-
nation performance improves in both stages of learning for both YA
and OA (Maes et al., 2017) and that these learning effects are age-
dependent, with lower learning rates in OA. Recent studies revealed
that WM microstructural organisation of left PMd–right M1
(LPMd–RM1) and M1–M1 pathways predict bimanual performance
in OA (Serbruyns et al., 2015; Fujiyama et al., 2016a,b). However,
RPMd also appeared to be particularly involved in performing com-
plex bimanual tasks (Sadato et al., 1997; Wenderoth et al., 2004;

Aramaki et al., 2006; Van den Berg et al., 2010). Accordingly, we
hypothesised that the WM microstructural organisation of the path-
ways linking M1–M1 and PMd–M1 would predict bimanual motor
learning performance. Because previous structural imaging studies
have demonstrated age-dependent WM microstructural alterations of
the brain (Sullivan & Pfefferbaum, 2006; Giorgio et al., 2010) pre-
dicting age-dependent differences in motor tasks performance (Zahr
et al., 2009; Sullivan et al., 2010; Voineskos et al., 2012), we
hypothesised that age may also modulate the effect of WM
microstructural organisation on bimanual motor learning.

Materials and methods

Participants

Twenty-six YA and 25 OA (right-handed; Oldfield, 1971) volunteers
participated in the study. Three OA were excluded due to brain
lesions and/or extreme atrophy as identified by a trained neuroradi-
ologist. In addition, four YA were excluded: one due to poor DWI
quality and presence of artefacts, two due to excessive head move-
ments during DWI acquisition and one dropout. As a result, 22 OA
(age: 68.41 � 5.58 years; 12 females) and 22 YA (age:
21.05 � 2.48 years; 13 females) were included in the analyses. The
groups did not differ significantly with respect to gender
(v2(1) = 0.09, P = 0.76). All participants had normal or corrected-
to-normal vision, and none reported neurological, psychiatric or car-
diovascular disorders. This study was carried out in accordance with
the Declaration of Helsinki (1964) and was approved by the Medical
Ethics Committee UZ KU Leuven, Belgium. Participants were finan-
cially compensated for participation and provided written informed
consent prior to the experiment.

Bimanual tracking task

We used a bimanual tracking task in which two dials controlled the
direction and speed of a cursor on a computer screen: the right dial
controlled displacement along the x-axis and the left dial along the
y-axis (Fig. 1A; for details see Sisti et al., 2011; Gooijers et al.,
2013; Beets et al., 2015; Chalavi et al., 2016). During each 9-s trial
of the task, a white target dot moved over a blue line at a constant
speed from start (centre of the screen) to end (Fig. 1B). The partici-
pant was instructed to track the target dot as closely as possible by
rotating both dials simultaneously. Four coordination patterns
imposed by the line direction were tested: both hands rotating
inwards, outwards, clockwise or counterclockwise. Each pattern was
performed with five distinct interhand frequency ratios, comprising
1 : 1, 1 : 2, 1 : 3, 2 : 1 and 3 : 1 (left hand: right hand). Thus, the
combination of coordination patterns and frequency ratios resulted
in 20 task variations, each being represented by a distinct target line
(Fig. 1C). The intertrial interval was 3 s.

Experimental set-up and procedure

This study was part of a larger multimodal structural and fMRI pro-
ject investigating the neural mechanisms underlying bimanual task
performance (Beets et al., 2015) and consisted of seven training ses-
sions spread across 14 calendar days. On the first and seventh train-
ing session, hereafter referred to as Pre and Post, respectively,
participants were trained with the bimanual tracking task in the MRI
scanner while lying in a supine position (Fig. 1A), elbows flexed at
45° and forearms resting on pillows. Excessive head movements
were prevented by a bite-bar and foam cushions. Visual stimuli were
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projected by an LCD projector (Barco 6300, 1280 9 1024 pixels)
onto a double mirror placed in front of the participant’s eyes. A
non-ferromagnetic apparatus with two dials (diameter = 5 cm) was
placed over the participant’s thighs. The participants were required
to turn the handle of the dials with the fingers/wrist according to
specific coordination patterns. Angular displacements were registered
by means of non-ferromagnetic optical shaft encoders (HP, 2048
pulses per revolution, sampling frequency 100 Hz) fixed to the rota-
tion axes of the dials. Version 8.5 of Laboratory Virtual Instrumen-
tation Engineering Workbench (National Instruments) was used for
task presentation and recording of the behavioural data.
On the Pre and Post scanning sessions, 96 task trials, divided into

48 trials with concurrent feedback (FB) and 48 trials without feedback
(NFB), were performed. The concurrent FB was provided by means
of a red cursor displaying the actual tracking trajectory based on the
contribution of both limbs. The trials were spread over six fMRI/be-
havioural runs with inter-run interval of approximately 3 min (total
session time: ~ 30 min). The order of trials was identical across partic-
ipants in both Pre and Post sessions. The frequency ratio was pseudo-
randomised across the FB and NFB conditions such that one-third of
the trials was performed according to a 1 : 1 ratio, one-third according
to a 1 : 2/2 : 1 ratio and one-third according to a 1 : 3/3 : 1 ratio. On
the remaining five intermediate training sessions (sessions 2–6), par-
ticipants were trained with the bimanual tracking task while seated in
front of a computer screen (distance ~ 0.5 m) and with vision of the
hands being occluded. On each of these training sessions, 10 blocks of
20 fully randomised trials were performed for ~1 h. The visual FB
was displayed as in Pre and Post sessions in 50% of the trials. How-
ever, for the remaining 50% NFB trials, the entire actually produced
trajectory was shown in red, concurrently with the required blue target
line for a duration of 1 s after the trial. This was done to reduce the
dependency on online visual FB and enhance learning in the NFB
condition. In this study, all individual trials in the training session Pre
(96 trials) were used to investigate the fast, early stage of learning,
and all individual trials in the training sessions Pre and Post (96 trials
each) were used to investigate the slow, late stage of learning. The
behavioural results regarding training sessions 2–6 were published
elsewhere (Beets et al., 2015; Chalavi et al., 2016).

Kinematic data analysis

MATLAB R2011b was used for the offline analyses of the behavioural
data. On each trial, the positions (x, y) of the white target dot and
the cursor were sampled at 100 Hz. For each trial, the Euclidian dis-
tance between the white target dot and the cursor position at each
time point was calculated (900 distances in arbitrary units (a.u.)).
Subsequently, the ‘trial error score’ was calculated by taking the
average of these distances and was used as an indicator of accuracy
with higher values reflecting lower bimanual performance.

Image acquisition

A Siemens 3-T Magnetom Trio MRI scanner (Siemens, Erlangen, Ger-
many) with a 12-channel head coil was used for acquisition of brain
images. For anatomical detail, a high-resolution whole brain T1-
weighted structural image was obtained using magnetisation-prepared
rapid gradient echo (MPRAGE; repetition time (TR)/echo time
(TE) = 2300/2.98 ms, voxel size = 1 9 1 9 1.1 mm3, field of view
(FOV) = 240 9 256 mm2, slices = 160 and flip angle = 9°). Then, a
field map image was acquired using a dual gradient echo acquisition
(GRE; TR = 1000 ms, TE2/TE1 = 5.69/3.23 ms, voxel size = 3 9

3 9 2.8 mm3, matrix size = 64 9 64, slices = 50; flip angle = 60°).
DWIs were acquired prior to the fMRI/behavioural runs in training ses-
sion Pre using the following parameters: single-shot spin echo planar
with spectral attenuated inversion recovery (SPAIR), TR/TE = 10700/
82 ms, voxel size = 2.2 9 2.2 9 2.4 mm3, matrix size = 96 9 96,
slices = 60, flip angle = 90°, diffusion weighting of b = 1000 mm2/s
applied in 64 non-collinear directions and one non-diffusion-weighted
image.

Image processing

For each subject, first, the DWIs were visually inspected in three
orthogonal views using ExploreDTI (Leemans et al., 2009; www.ex
ploredti.com) to identify visible artefacts, such as large signal drop-
outs and geometric distortions (Tournier et al., 2011). Second, the
DWIs were preprocessed using MRtrix3 (J-D Tournier, Brain

Fig. 1. Experimental set-up (A) in the scanner on training sessions 1 (Pre) and 7 (Post). (B) A typical feedback trial in which the subject had to track the white
target dot moving along the blue target line for 9 s by simultaneous clockwise rotation of the left and right-hand dials with the same speed (1 : 1 ratio). Con-
current visual feedback representing the actual target error was shown in red. The red curve was absent for the no-feedback trials on training sessions Pre and
Post and was given 1 s after the trial on training sessions 2–6. (C) Schematic drawing of the 20 target line directions corresponding to four different bimanual
patterns and five possible frequency ratios. [Colour figure can be viewed at wileyonlinelibrary.com].
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Research Institute, Melbourne, Australia; www.mrtrix.org) which
incorporates tools from FSL (Oxford University, Oxford, UK; https://
fsl.fmrib.ox.ac.uk) when necessary. The preprocessing steps included
the correction of the DWIs for the following: eddy-current-induced
distortions and head motion (Andersson & Sotiropoulos, 2016), sus-
ceptibility-induced distortions (Jezzard & Balaban, 1995), bias fields
(Tustison et al., 2010) and Gibbs ringing (Kellner et al., 2016). Third,
the diffusion tensor model was fitted to each voxel of the corrected
DWIs with a robust iterative reweighted least squares estimator (Col-
lier et al., 2015) and the fractional anisotropy (FA) map was calcu-
lated. Fourth, the warp to the Montreal Neurological Institute (MNI)
standard space was obtained by non-linearly registering the FA map
to the FMRIB58_FA template using tract-based spatial statistics
(TBSS; Smith et al., 2006) algorithm in FSL. The inverse of this warp
was also calculated to warp MNI masks to subject’s native space.
Fifth, the T1 image was rigidly registered to the corrected DWIs to
account for subject motion between the DW and structural scans,
using mutual information as a similarity measure. Proper registration
was checked visually.
In this study, average FA within the pathway of interest was used

as an indicator of WM microstructural organisation to predict learn-
ing ability. FA ranges between zero and one with higher values
reflecting higher microstructural organisation for the underlying
white matter pathway (Beaulieu, 2002). To delineate the pathways
of interest and calculate the average FA, the following main steps
were performed.

Region of interest (ROI) creation

Using FSL, the bilateral M1 (anterior to the central sulcus) and PMd
ROIs of Human Motor Area Template (HMAT; Mayka et al., 2006;
http://lrnlab.org/) were extracted in MNI space. The ROIs were subse-
quently transformed from MNI to subject’s native space using the
inverse warp obtained previously. Of note, HMAT has been created
based on 126 functional imaging studies performed with motor tasks.
To further refine these masks based on individual anatomy, similar
methodology as in Schulz et al. (2014, 2015) was used. First, the reg-
istered T1 image of each subject was segmented into grey and white
matter (GM and WM) masks using SPM12 toolbox (http://www.fil.
ion.ucl.ac.uk/spm/). Second, the GM and WM masks were thresh-
olded at 0.2, non-zero voxels were mean dilated, and the resulting
masks were multiplied to create the GM/WM border mask. Third, the
GM/WM border mask and each M1 and PMd functional mask were
multiplied to obtain the common voxels of these masks. This proce-
dure, thus, integrates both functional and anatomical criteria to better
define the ROIs. For each subject, all steps of ROI creation were visu-
ally inspected to ensure proper implementation. To restrict tractogra-
phy (see next section) to the fibre tracts passing only through the CC,
the following masks were created for each subject: (1) the CC inclu-
sion mask was created by manual segmentation of the CC in the mid-
sagittal plane and � 3 slices on each side; (2) the exclusion midline
mask was created by drawing the midline in every coronal slice with-
out overlapping with the CC inclusion mask.

Constrained spherical deconvolution (CSD) and probabilistic
tractography

Application of CSD to streamline tractography has been shown to
increase reliability of tractography throughout the brain (Jeurissen
et al., 2011). A compulsory step in CSD is the ‘response function’
(RF) calculation which was made using Tournier’s algorithm (Tour-
nier et al., 2013). Subsequently, CSD (with the maximum harmonic

order of 8) was employed to estimate fibre orientation distribution
function (fODF) in each brain voxel (Tournier et al., 2007). Proba-
bilistic streamline tractography between ROIs was performed on
fODFs, using a second-order integration over fibre orientation distri-
butions (iFOD2) (Tournier et al., 2010) algorithm which treats the
fODF as a probability density function from which to sample. The
following parameters were used for the tracking algorithm employed
in the subject’s native space: number of bidirectional generated
streamlines = 106, step size = 1 mm, maximum angle between suc-
cessive steps = 40ᵒ, minimum streamline length = 40 mm, maxi-
mum streamline length = 250 mm and fODF cut-off value for
initiating and terminating streamlines = 0.1. A symmetric and pre-
cise tracking result between two ROIs (for example between bilat-
eral M1s) was obtained by considering both ROIs as ‘seed’ and
‘include’ masks. To guide the tracking algorithm for more accurate
reconstruction of transcallosal pathways, the CC inclusion and the
exclusion midline mask were also considered. To prevent ‘cross
talk’ between the seed areas, the ROIs not involved in the active
tracking were used as exclusion masks (Schulz et al., 2014). All
previously mentioned procedure was performed in MRtrix3.

Population mask of transcallosal pathways of interest and
average FA calculation

To create the population mask for each transcallosal pathway of inter-
est (Fig. 2A), the following procedure was performed in MRtrix3. (1)
The tracking result of each subject was warped to MNI space. (2) The
tract density image (TDI) was created by calculating the total number
of streamlines passing each voxel (Calamante et al., 2010). (3) 0.1%
of the total number of successful streamlines with an absolute mini-
mum of 2 per voxel was chosen to threshold the TDI. This threshold
was chosen because it eliminated spurious fibre tracts based on visual
inspection. (4) Binarised masks were summed across YA and OA to
create the population mask which was then thresholded to select only
those voxels that were found at least in 68% (N = 30; comparable
with Schulz et al., 2014) of the subjects. (5) The thresholded popula-
tion mask of each pathway of interest was then transformed to the sub-
ject’s native space to calculate the mean FA value within the subject’s
mask. The mean FA values and the log10 of target error scores were
used in the Statistical analysis section.

Statistical analysis

The data set was built with nested (i.e. multiple observations within
a single participant) and crossed (i.e. participants observed in multi-
ple bimanual coordination conditions) measurements. Thus, data
were analysed using linear mixed models with crossed random fac-
tors. Linear mixed models take into account the sampling variability
of both participants and conditions, thereby preventing a substantial
inflation of false positives (i.e. type 1 error), whereas traditional
analyses of variance such as ANOVAs disregard this sampling vari-
ability (Boisgontier & Cheval, 2016). Moreover, treating both partic-
ipants and conditions as random effects allows generalising the
results not only to the population of participants, but also to the
population of conditions as well (Barr et al., 2013). Finally, linear
mixed models prevent information loss due to averaging over obser-
vations, as the model accounts for all single trials.
In this study, participants (N = 44) and bimanual coordination

patterns (n = 20) served as random factors in the linear mixed mod-
els. These models were built using the R language lmerTest pack-
age, version 2.0-30 (http://www.r-project.org/). Examination of the
statistical assumptions required for linear mixed models revealed
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that residuals were not normally distributed and not centred on zero.
Therefore, a log10 transformation on target error score was con-
ducted to normalise the distribution of residuals. Of note, for illus-
tration purposes, the non-transformed data were plotted in the
figures.
The first model of the series tested the effect of age on the fast

(i.e. trial number 1–96 at Pre) (Table 1; Model 1) or slow (i.e. Pre
vs. Post) learning stage (Table 2; Model 4) controlling for the effect
of feedback. The second model of the series included the pathways’
FA in interaction with the fast (Table 1; Model 2) or slow learning
stage (Table 2; Model 5). The effect of the pathways’ FA on the
fast learning stage was assessed based on the interaction with trial
number at Pre, and the effect on the slow learning stage was
assessed based on the interaction with Pre vs. Post. Including trial
as a predictor is only possible using linear mixed models, as tradi-
tional ANOVAs require averaging over trials. The third model of the
series included a 3-way interaction term (pathways’ FA 9 learning
stage (fast or slow) 9 age) to investigate the extent to which the
effect of FA on the fast (Table 1; Model 3) or slow (Table 2; Mod-
els 6a and b) learning stage was dependent on age. The continuous
variables were centred on zero. Variance inflation factor (VIF; Bels-
ley, 1991) was used to inspect signs of multicollinearity. Akaike
information criterion (AIC; Sakamoto et al., 1986) was used to
assess the relative quality of statistical models. The best model of
each series (fast and slow stage of learning) was selected based on
the following: (1) multicollinearity, with models showing predictors
with VIF scores higher than ten being discarded (Hair et al., 1992)
and (2) the fit of the models, with model with lower AIC score

indicating a more accurate fit for a given set of data (Sakamoto
et al., 1986).

Results

Age group differences in WM microstructural organisation

Figure 2A shows the population maps (across YA and OA) of tran-
scallosal pathways connecting bilateral M1s, RPMd–LM1 and
LPMd–RM1. In line with our expectation, significant age group
differences were observed for all pathways of interest (separate
Mann–Whitney U-tests, all P-values < 0.005), with higher FA in
YA compared with OA (Fig. 2B).

Model selection

Model 1 (Table 1) investigating the effect of age on the fast learn-
ing stage showed an AIC score of 717.2. Model 2 (Table 1) testing
the effect of pathways’ FA on the fast stage of learning showed an
AIC score of 682.5. Thus, Model 2 predicted the data more accu-
rately than Model 1 (DAIC = �34.7, negative DAIC means better
fit). Model 3 (Table 1) investigating the age-dependent effect of
pathways’ FA on the fast stage of learning did not meet the assump-
tions on the multicollinearity with a VIF score of 20.8. Yet, a sensi-
tive analysis testing each 3-way interaction of Model 3 individually
confirmed that none was significant (all P-values > 0.254). Accord-
ingly, Model 2 was the best model of the series testing the fast stage
of learning.

Fig. 2. Age-related differences in WMmicrostructural organisation of pathways of interest. (A) Representative sagittal (with y values) and axial (with z values) slices
of population maps across YA and OA for M1–M1 (left panel), RPMd–LM1 (middle panel) and LPMd–RM1 (right panel) white matter pathways are overlaid on the
MNI T11mm template. Colour bars indicate the number of subjects (n) showing overlap of the individual pathways. For visualisation purposes, images were thresholded
to show only voxels common to at least 10 participants. (B) Mean FA of each pathway is shown for YA and OA. Middle bar: median; box: 1st and 3rd quartiles; whis-
kers: minimum and maximum. YA = young adults; OA = old adults; R = right; L = left; A = anterior; P = posterior; R/L PMd = right/left dorsal premotor cortex;
L/RM1 = left/right primary motor cortex; fractional anisotropy = FA; N = number of subjects; *P < 0.005. [Colour figure can be viewed at wileyonlinelibrary.com].
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Model 4 (Table 2) investigating the effect of age on the slow
stage of learning showed an AIC score of 1379.4. Model 5
(Table 2) testing the effect of pathways’ FA on the slow learning
stage predicted the data more accurately than Model 1
(DAIC = �53.8). Model 6a (Table 2) investigating the age-depen-
dent effect of pathways’ FA on the slow stage of learning did not
meet the assumptions on the multicollinearity with a VIF score of
19.4. However, sensitive analyses testing each 3-way interaction of
Model 6a individually revealed that the 3-way interaction involving
the LPMd–RM1 pathway was significant (P < 9 9 10�4) but not
the ones involving M1–M1 (P = 0.087) and RPMd–LM1
(P = 0.130) pathways. Therefore, Model 6b (Table 2) was tested
to include the 2-way interactions of Model 5 and the significant 3-
way LPMd–RM1 FA 9 slow-stage learning 9 age interaction.
This model met the multicollinearity assumption with a VIF score
of 9.7 and predicted the data more accurately than Model 4 and
Model 5 (DAIC = �67.2 and �13.4, respectively). Accordingly,
Model 6b was the best model of the series testing the slow stage
of learning.

Effects of age on the fast and slow stage of learning

Model 2 (Table 1) showed a significant fast-stage learning 9 age
interaction (b = 0.002; P < 7 9 10�5; Fig. 3A) indicating that the
fast stage of learning significantly differs between YA and OA. This
effect of age was independent of microstructural organisation of the
WM pathways as they were included in this model. Simple slope
analysis revealed that target error score decreased more from trial 1
to 96 in OA (b = �0.003; P < 2 9 10�16) than in YA
(b = �0.001; P < 3 9 10�5). Simple effect analysis revealed that
target error score was also lower in YA than OA at trial 1
(b = 0.370; P < 2 9 10�4) and to a smaller extent at trial 96
(b = 0.284; P = 0.002).
Model 6b (Table 2) showed a significant slow-stage learning (i.e.

Pre vs. Post) 9 age interaction (b = �0.088; P < 5 9 10�6;
Fig. 3B) indicating that the slow stage of learning significantly dif-
fers between YA and OA. This effect of age was independent of
microstructural organisation of the WM pathways as they were
included in this model. Simple slope analysis revealed that target
error score decreased more from Pre to Post in YA (b = �0.428;
P < 2 9 10�16) than in OA (b = �0.340; P < 2 9 10�16). Simple
effect analysis revealed that target error score was lower in YA than
OA at Pre (b = 0.256; P = 0.002) and to a bigger extent at Post
(b = 0.344; P < 5 9 10�5). Altogether, these results indicated that

performance gain was larger in OA compared with YA in the fast
stage of bimanual learning. Conversely, the gain in performance
was larger in YA compared with OA in the slow stage.

Effects of WM microstructural organisation on the fast stage of
learning

Model 2 (Table 1) showed a significant fast-stage learning (i.e. trials
1–96 at Pre) 9 M1–M1 FA interaction (b = �0.094; P < 4 9 10�11;
Fig. 4A), indicating that the effect of fast-stage learning significantly
varies depending on the level of M1–M1 FA. Simple slope analysis
revealed that target error score increased from trial 1 to 96 when M1–
M1 FA was low (�1 standard deviation) (b = 0.002; P = 0.009) and
decreased when FA was high (+1 standard deviation) (b = �0.004;
P < 2 9 10�16). Simple effect analysis revealed that target error score
did not significantly differ between low and high M1–M1 FA at trial 1
(b = 0.050; P = 0.985), but was lower at trial 96 for high compared
with low M1–M1 FA values (b = �8.826; P = 0.002). In this model,
a significant fast-stage learning 9 RPMd–LM1 FA interaction
(b = 0.055; P < 5 9 10�6; Fig. 4B) also indicated that the fast-stage
learning slopes were dependent on RPMd–LM1 FA. Simple slope
analysis revealed that target error score decreased from trial 1 to 96
when RPMd–LM1 FA was low (b = �0.003; P < 6 9 10�12), but
not when it was high (b = 6 9 10�4; P = 0.263). Simple effect analy-
sis revealed that target error score did not significantly differ between
low and high RPMd–LM1 FA at trial 1 (b = 0.050; P = 0.985), but
was lower at trial 96 for low compared with high RPMd–LM1 FA
(b = 5.342; P = 0.022). Model 2 also showed a non-significant fast-
stage learning 9 LPMd–RM1 FA interaction (b = 0.003; P = 0.608)
indicating that fast-stage learning slopes were not dependent on
LPMd–RM1 FA. In sum, the model predicted higher absolute perfor-
mance gain in the fast stage of bimanual learning when M1–M1 FA is
high or when RPMd–LM1 FA is low, irrespective of age. Further-
more, LPMd–RM1 FA did not affect absolute performance gain in the
fast stage of bimanual learning.

Effects of WM microstructural organisation on the slow stage
of learning

Model 6b (Table 2) showed a slow-stage learning (i.e. Pre vs.
Post) 9 M1–M1 FA interaction (b = 3.416; P < 3 9 10�9; Fig. 5A),
which indicated that slow-stage learning slopes were dependent on
M1–M1 FA. Simple slope analysis revealed that target error score
decreased from Pre to Post when M1–M1 FA was low (b = �0.531;

Fig. 3. Age as predictor of the (A) fast (trial 1 to 96 of Pre) and (B) slow stage (Pre vs. Post) of bimanual coordination learning. Mean (� standard error) is
shown. YA = young adults; OA = old adults; a.u. = arbitrary units; b = coefficient/estimate; **P < 0.01; ***P < 0.001.
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P < 2 9 10�16) and to a smaller extent when FA was high
(b = �0.324; P < 2 9 10�16). Simple effect analysis revealed that tar-
get error score was higher in low vs. high M1–M1 FA at Pre
(b = �4.956; P = 0.035), but not at Post (b = �1.541; P = 0.504). In
this model, a significant slow-stage learning 9 RPMd–LM1 interaction
indicated that slow-stage learning slopes were dependent on RPMd–
LM1 FA (b = �3.751; P < 3 9 10�15; Fig. 5B). Simple slope analy-
sis revealed that target error score decreased from Pre to Post when
RPMd–LM1 FA was low (b = �0.306; P < 2 9 10�16) and to a

bigger extent when FA was high (b = �0.550; P < 2 9 10�16). How-
ever, simple effect analysis revealed that target error score did not sig-
nificantly differ between low and high RPMd–LM1 FA at Pre
(b = 2.938; P = 0.129) and Post (b = �0.813; P = 0.670). Model 6b
also showed a 3-way slow-stage learning 9 LPMd–RM1 9 age inter-
action (b = 1.530; P < 4 9 10�5) with a 2-way significant slow-stage
learning 9 LPMd–RM1 interaction in YA (Fig. 5C; b = 1.511;
P < 2 9 10�5) but not in OA (Fig. 5D; b = �0.019; P = 0.951). In
YA, simple slope analysis revealed that target error score decreased

Fig. 4. White matter pathways predicting the fast stage (trial 1 to 96 of Pre) of bimanual coordination learning across YA and OA: (A) M1–M1 FA and (B)
RPMd–LM1 FA. Mean (� standard error) is shown. YA = young adults; OA = old adults; a.u. = arbitrary units; FA = fractional anisotropy; RPMd = right
dorsal premotor cortex; LM1 = left primary motor cortex; SD = standard deviation; b = coefficient/estimate; *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 5. White matter pathways predicting the slow stage (Pre vs. Post) of bimanual coordination learning: (A) M1–M1 FA and (B) RPMd–LM1 FA across YA
and OA. Because of a significant 3-way interaction of LPMd–RM1 FA 9 slow-stage learning 9 age for this predictor, the results are shown for (C) YA and
(D) OA, separately. Mean (� standard error) is shown. YA = young adults; OA = old adults; a.u. = arbitrary units; FA = fractional anisotropy; R/L
PMd = right/left dorsal premotor cortex; L/R M1 = left/right primary motor cortex; SD = standard deviation; b = coefficient/estimate; NS = not significant,
P > 0.05; *P < 0.05; ***P < 0.001.
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from Pre to Post when LPMd–RM1 FA was low (b = �0.485;
P < 2 9 10�16) and to a smaller extent when it was high (b = �0.373;
P < 2 9 10�16). By contrast, in OA, target error score decreased from
Pre to Post to the same extent for low (b = �0.339; P < 2 9 10�16)
and high (b = �0.340; P < 2 9 10�16) LPMd–RM1 FA. Simple
effect analysis revealed that target error score did not significantly differ
between low and high LPMd–RM1 FA at Pre (YA: b = �1.214,
P = 0.395; OA: b = 0.545, P = 0.656) and Post (YA: b = 0.297,
P = 0.835; OA: b = 0.526, P = 0.667) in YA and OA. In sum, the
model predicted higher absolute performance gain in the slow stage of
bimanual learning when RPMd–LM1 FA is high or when M1–M1 FA
is low, irrespective of age. Furthermore, lower LPMd–RM1 FA in
YA predicted bigger performance gain in the slow stage of bimanual
learning.

Discussion

The present study investigated the extent to which (1) age deter-
mined the absolute performance gains in the fast and slow stages of
bimanual learning, (2) WM microstructural organisation of the path-
way between bilateral M1s and heterotopic pathways between M1
and PMd predicted bimanual motor learning in these stages and (3)
the latter predictions were not affected by healthy ageing. DWI and
CSD-based probabilistic tractography were used to delineate these
transcallosal WM pathways in YA and OA. Behavioural results
showed that both OA and YA improved their absolute performance
in both fast and slow stages of bimanual learning. However, this
improvement was larger during the fast (early) learning stage in OA
and during the slow (later) stage in YA. The statistical models pre-
dicted that individuals with higher FA of M1–M1 and RPMd–LM1
WM pathways showed larger performance gain in the fast and slow
stage of bimanual learning, respectively. These predictions were
age-independent.

Fast and slow stages of learning in YA and OA

Our findings support previous results showing that bimanual perfor-
mance is lower in OA than YA (Swinnen et al., 1998; Voelcker-
Rehage & Willimczik, 2006; Fling et al., 2011; Serbruyns et al.,
2015). The lower performance level in OA is generally attributed to
the age-related alterations in the central and peripheral nervous sys-
tem as well as the neuromuscular system (Seidler et al., 2010). In
line with previous studies, both age groups showed motor perfor-
mance improvement during both fast and slow stages of learning
(Brashers-Krug et al., 1996; Karni et al., 1998; Doyon et al., 2003).
Furthermore, compared with YA, OA showed more gains in perfor-
mance during the fast but less during the slow stage of bimanual
learning. With respect to the fast learning stage, our results seem to
be inconsistent with previous work showing higher (Swinnen et al.,
1998; Wishart et al., 2002; Perrot & Bertsch, 2007; Cirillo et al.,
2010) or similar (Howard & Howard, 1992; Cirillo et al., 2011;
Berghuis et al., 2016) absolute performance gain in YA as com-
pared to OA during the first day of practice. However, consistent
with our findings, Brown et al. (2009) showed superior capacity of
OA over YA to acquire new motor skills in the first session of train-
ing. Importantly, our analysis controlled for the level of performance
and thereby ruled out this potential confound. Therefore, our results
clearly support the fact that the fast learning stage of motor learning
is not affected by ageing. With respect to the slow learning stage,
our results support previous work showing higher absolute perfor-
mance gain in YA as compared to OA after 5 days of practice in a
demanding bimanual coordination task (Ren et al., 2015) or 4 days

of practice in a juggling task (Perrot & Bertsch, 2007). Our findings
seem to be in contrast with other juggling (Voelcker-Rehage & Wil-
limczik, 2006) and bimanual coordination (Pauwels et al., 2015)
studies indicating, respectively, equal or larger absolute performance
gain in OA than YA after several days of practice. However, the
results from these latter studies should be considered cautiously as
they may be related to a larger window for improvement in OA due
to lower initial performance levels.
In sum, our findings showed higher learning rates in OA during

the early phase of learning, whereas learning rates were higher in
YA during the late phase. This result could be related to previous
studies showing that motor tasks learned more quickly are also the
ones showing lower retention (Pauwels et al., 2015). Although
these previous results were obtained by manipulating task com-
plexity, they may suggest that the learning process we observed
here in YA could be more robust over time than the one in OA.
This would support previous results showing that retention is
higher in YA than in OA (Pauwels et al., 2015). It is worth noting
that the diversity of the bimanual tasks and the potential interac-
tions of task-related factors (e.g. task complexity, task difficulty
and the presence vs. absence of augmented feedback) and training-
related factors (e.g. baseline performance and number of trials)
with ageing effects may contribute to inconsistencies in the litera-
ture (Maes et al., 2017). In the current study, all these factors
were controlled in the models (augmented vs. no augmented feed-
back, trial number, baseline performance as fixed factors, condition
complexity and difficulty as random factors), which makes our
findings particularly relevant.

Microstructural organisation in OA

The spatial configuration of the homotopic transcallosal pathways
between M1s was in good agreement with previous reports (Zarei
et al., 2006; Wahl et al., 2007; Fling et al., 2013; Schulz et al.,
2014). Regarding the heterotopic pathways between PMd and M1,
anatomical data in animals have indicated the presence, although
sparse, of such direct pathways (Marconi et al., 2003). Using CSD-
based probabilistic tractography, we delineated these pathways with
a high consistency across subjects and confirmed recent imaging
data in humans (Boorman et al., 2007; Schulz et al., 2014; Ruddy
et al., 2017). These human imaging data taken together with the ani-
mal anatomical data may further support the existence of such direct
pathways in humans. We estimated the microstructural organisation
of the underlying WM pathway of interest via FA. We found that,
for all the reconstructed interhemispheric pathways of interest, the
mean FA values were lower in OA than YA, which supports numer-
ous studies indicating reductions in WM microstructural organisation
with ageing (Nusbaum et al., 2001; Sullivan & Pfefferbaum, 2006,
2007; Minati et al., 2007; Giorgio et al., 2010; Serbruyns et al.,
2015).

WM pathways, motor learning and ageing

Previous work has indicated the dynamic modulation of activity in a
widely distributed network of neocortical structures including, but
not limited to, M1 and PMd during the fast and slow stages of
bimanual learning (Debaere et al., 2004; Puttemans et al., 2005;
Remy et al., 2008; Ronsse et al., 2011; Beets et al., 2015). In addi-
tion to intraregional modulation of activity, the alteration of inter-
regional functional connectivity also plays an important role in
bimanual learning (Andres et al., 1999; Serrien & Brown, 2003;
Sun et al., 2007; Heitger et al., 2012). However, functional
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interactions between brain regions may also be contingent upon the
structure of the underlying WM pathways (Fields, 2008).

WM pathways predicting performance in the fast and slow
stages of motor learning

Studies using functional connectivity showed that changes in the
coupling of M1–M1 activity occur during the fast stage of bimanual
learning (Andres et al., 1999; Serrien & Brown, 2003; Sun et al.,
2007). Thus, our results showing that individuals with higher FA in
the M1–M1 WM pathway improved more than individuals with
lower FA in the fast learning stage support these functional studies
and provide a structural foundation for the functional interactions
during the fast stage of bimanual learning. Previous work has indi-
cated the role of PMd in premovement cognitive processes such as
action selection and planning (Hoshi & Tanji, 2002, 2004; O’Shea
et al., 2007), which are important elements for learning of the
visuomotor task used in the current study. The PMd is functionally
lateralised, such that the LPMd is activated during performance of
simple unimanual and bimanual movements, whereas the RPMd is
particularly active during complex bimanual movements (Van den
Berg et al., 2010). The involvement of PMd in motor learning is
also lateralised towards the LPMd during the early stage of learning
(for review see Schubotz & Von Cramon, 2003). However, the
models from our analyses suggested no effect of LPMd–RM1 FA
and an adverse impact of higher RPMd–LM1 FA on the fast stage
of learning. In other words, higher FA between RPMd and LM1
may suggest that this pathway interferes with the fast learning stage.
The absence of effect of the LPMd–RM1 pathway is not in line
with previous functional activation findings showing consistent brain
activity of LPMd in learning of unimanual motor tasks (Hardwick
et al., 2013). This discrepancy suggests that including the less accu-
rate non-dominant limb in the integrated bimanual control structure
modifies the predictive value of right and left PMd-related metrics
in motor learning.
Our results showed that individuals with lower FA in the M1–M1

WM pathway improved more than individuals with higher FA in the
slow learning stage. This result was mainly explained by a differ-
ence at Pre but not at Post training session, which suggested that the
M1–M1 pathway became less important for the performance in the
advanced learning stage. The models also suggested a beneficial
impact of higher RPMd–LM1 FA on the slow stage of learning. In
other words, higher FA between RPMd and LM1 increased the per-
formance gain in the slow learning stage, suggesting that this com-
munication should be maximised at this stage. This results supports
previous work showing the involvement of RPMd during advanced
stages of learning and in memory storage (for review see Schubotz
& Von Cramon, 2003). However, this result should be cautiously
considered as this interaction did not result in significant differences
in performance at Pre and Post training sessions between individuals
with lower and higher RPMd–LM1 FA.
Based on these findings, and tentatively assuming that an

enhanced microstructural organisation of white matter connections
between two brain areas may benefit interaction between these areas,
we could speculate that the fast stage of learning benefits from
strong interactions between brain areas involved in movement exe-
cution (M1–M1) to develop the basic temporal organisation of the
bimanual movement structure. Further refinement of performance is
observed during the slow stage of learning. While we consider left
PMd an important brain area to plan and control bimanual move-
ments (Fujiyama et al., 2016a,b), the non-dominant limb is the
weaker part in the bimanual chain. Therefore, the (direct and/or

indirect) input from right PMd to left M1 is likely critical for perfor-
mance refinement.

Age does not influence the effect of WM microstructural
organisation on learning

A recent study by Schulz et al. (2014) showed associations between
the slow stage of unimanual sequence learning and FA of WM path-
ways connecting sensorimotor cortical areas, but only in OA. The
authors indicated that the lack of associations in YA could be due to the
small sample size preventing sufficient statistical power. In the current
study, instead of averaging performance across trials which limits the
statistical power, we made use of single trials in the linear mixed mod-
els. Contrary to Schulz et al. (2014), we reported similar effects for
both YA and OA regarding the role of M1–M1 and RPMd–LM1 WM
microstructural organisation in learning. The lack of a significant inter-
action with age in these pathways is consistent with previous work indi-
cating a link between FA of the WM pathway connecting dorsolateral
prefrontal cortex and caudate nucleus during the slow stage of uniman-
ual learning in both YA and OA (Bennett et al., 2011). In our study,
we did show an interaction between LPMd–RM1 FA 9 slow learning
stage 9 age with low LPMd–RM1 FA predicting higher learning rates
than high FA in YA. The result suggested an adverse impact of higher
LPMd–RM1 FA on the slow stage of learning in YA but not in OA.
However, these results in YA should be cautiously considered as per-
formance between individuals with lower and higher LPMd–RM1 FA
did not significantly differ at Pre and Post training sessions.

Conclusion

Our results showed that (1) age determines the learning gains in the
fast and slow learning stages with larger absolute performance
improvement in OA during the fast stage and in YA during the slow
learning stage, (2) higher FA of the M1–M1 WM pathway predicts
larger performance gain in the fast stage of bimanual learning,
whereas higher FA of the RPMd–LM1 WM pathway predicts higher
gain in the slow stage, and (3) age does not affect the latter predic-
tions. These results suggest that, in both YA and OA, the M1–M1
and RPMd–LM1 WM pathways are important for the fast and slow
stage of bimanual learning, respectively.
Among the strengths of the present study is the use of CSD-

based probabilistic tractography which is more reliable in tracking
within regions including crossing fibres compared to other multifi-
bre methods (Wilkins et al., 2015). However, we note that the
acquisition of recently developed multishell DWI could enhance
the tracking even more (Jeurissen et al., 2014). Another strength is
the use of a statistical approach (i.e. linear mixed models) that lim-
its false-positive rates. Because brain stimulation might alleviate
impaired skill acquisition particularly in OA (Zimerman et al.,
2013), additional knowledge of age-related structural alterations
and their specific associations with motor functions will pave the
way for optimising brain stimulation that is propagated via these
structural pathways.
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